AI资讯新闻榜单内容搜索-Context

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Context
Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

我们正处在一个AI Agent(智能体)爆发的时代。从简单的ReAct循环到复杂的Multi-Agent Swarm(多智能体蜂群),新的架构层出不穷。但在这些眼花缭乱的名词背后,开发者的工作往往更像是一门“玄学”,我们凭直觉调整提示词,凭经验增加Agent的数量,却很难说清楚为什么某个架构在特定任务上表现更好。

来自主题: AI技术研报
7687 点击    2025-12-16 09:59
告别「盲目自信」,CCD:扩散语言模型推理新SOTA

告别「盲目自信」,CCD:扩散语言模型推理新SOTA

告别「盲目自信」,CCD:扩散语言模型推理新SOTA

扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临

来自主题: AI技术研报
6883 点击    2025-12-13 10:59
RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG效果不及预期,试试这10个上下文处理优化技巧。对大部分开发者来说,搭一个RAG或者agent不难,怎么把它优化成生产可用的状态最难。在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。

来自主题: AI技术研报
7700 点击    2025-11-29 10:03
RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

Context Pruning如何结合rerank,优化RAG上下文?

来自主题: AI技术研报
8629 点击    2025-11-28 10:05
AI Agent 工程化,本质是数据库系统设计

AI Agent 工程化,本质是数据库系统设计

AI Agent 工程化,本质是数据库系统设计

最近半年,我阅读了业界关于 AI Agent 的工程实践:Anthropic 的 Context Engineering 论文、Manus 的工程分享、Cline 的 Memory Bank 设计等。同时自己也一直在做跟 AI Agent 相关的项目,如:Jta[1](开源的翻译 Agent,基于 Agentic Workflow)。

来自主题: AI技术研报
8125 点击    2025-11-20 15:03
EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

在大模型研究领域,做混合专家模型(MoE)的团队很多,但专注机制可解释性(Mechanistic Interpretability)的却寥寥无几 —— 而将二者深度结合,从底层机制理解复杂推理过程的工作,更是凤毛麟角。

来自主题: AI技术研报
9228 点击    2025-11-17 09:25
Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。

来自主题: AI技术研报
6321 点击    2025-11-14 10:22
40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

如果你也在做 RAG 或智能体应用,大概经历过这些瞬间:文档切得太碎,答案失去上下文;切得太大,又召回不准;加了更多提示词,效果可能更不稳定。

来自主题: AI技术研报
6797 点击    2025-11-06 09:37
Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

在几天前,上海交大发布了一篇名为 《上下文工程2.0:上下文工程的上下文》(Context Engineering 2.0: The Context of Context Engineering) 的重磅论文。

来自主题: AI技术研报
6174 点击    2025-11-05 09:57