DeepSeek又拿第一!首创「因果流」视觉推理,超越Gemini
DeepSeek又拿第一!首创「因果流」视觉推理,超越GeminiDeepSeek开源DeepSeek-OCR2,引入了全新的DeepEncoder V2视觉编码器。该架构打破了传统模型按固定顺序(从左上到右下)扫描图像的限制,转而模仿人类视觉的「因果流(Causal Flow)」逻辑。
DeepSeek开源DeepSeek-OCR2,引入了全新的DeepEncoder V2视觉编码器。该架构打破了传统模型按固定顺序(从左上到右下)扫描图像的限制,转而模仿人类视觉的「因果流(Causal Flow)」逻辑。
在达沃斯论坛之后,谷歌Deepmind CEO Demis Hassabis又连续上了两个播客,放出了不少谷歌的新动向!
这一框架可用于集成额外文本、语音和视觉等多种模态。
Sora画下的饼终于被做熟了!用DeepSeek式的慢思考逻辑,把AI视频从「看运气抽卡」变成了「确定性交付」,这才是电商人真正需要的工业革命。
“DeepSeek-V3是在Mistral提出的架构上构建的。”
过去两年,大模型的推理能力出现了一次明显的跃迁。在数学、逻辑、多步规划等复杂任务上,推理模型如 OpenAI 的 o 系列、DeepSeek-R1、QwQ-32B,开始稳定拉开与传统指令微调模型的差距。直观来看,它们似乎只是思考得更久了:更长的 Chain-of-Thought、更高的 test-time compute,成为最常被引用的解释。
面对琳琅满目的Deep Research Agent(深度研究智能体),究竟该如何选型?本文基于OSU与Amazon最新发布的MMDR-Bench论文,为您提供一份经过严谨科学验证的“避坑指南”。结论先行:综合任务首选谷歌Gemini Deep Research,而涉及计算机科学与数据结构的硬核任务,GPT-5.2依然是专家首选。
谷歌 DeepMind 发布 D4RT,彻底颠覆了动态 4D 重建范式。它抛弃了复杂的传统流水线,用一个统一的「时空查询」接口,同时搞定全像素追踪、深度估计与相机位姿。不仅精度屠榜,速度更比现有 SOTA 快出 300 倍。这是具身智能与自动驾驶以及 AR 的新基石,AI 终于能像人类一样,实时看懂这个流动的世界。
在当前的AI Research浪潮中,Autonomous Agents已经改变了我们获取信息的方式——从被动接收到主动检索。
现有的多模态模型往往被困在「视频」的孤岛里——它们只能回答视频内的问题。但在真实世界中,人类解决问题往往是「看视频找线索 -> 上网搜证 -> 综合推理」。