AI资讯新闻榜单内容搜索-Ed

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Ed
ShowMeAI周刊 No.13 | 上周最有讨论度的9个AI话题:AI教育谷歌扳回一局、阶跃终于摘星辰、大部分人用不起来AI…

ShowMeAI周刊 No.13 | 上周最有讨论度的9个AI话题:AI教育谷歌扳回一局、阶跃终于摘星辰、大部分人用不起来AI…

ShowMeAI周刊 No.13 | 上周最有讨论度的9个AI话题:AI教育谷歌扳回一局、阶跃终于摘星辰、大部分人用不起来AI…

Google Learn About:继 NotebookLM 之后又一个 AI Native 产品,真正的 AI Native Education 尝试

来自主题: AI资讯
7526 点击    2024-11-27 09:57
微软、OpenAI最新发布:从吴恩达教授推荐的Medprompt到o1的技术演进

微软、OpenAI最新发布:从吴恩达教授推荐的Medprompt到o1的技术演进

微软、OpenAI最新发布:从吴恩达教授推荐的Medprompt到o1的技术演进

近期,微软研究团队发布了一项重要的研究成果,揭示了AI推理能力从传统的提示工程方法(如Medprompt)到原生推理机制(如OpenAI的o1)演进的全貌。此项研究为正在开发AI产品的朋友们提供了宝贵的技术洞察。本文将详细分析这一研究的过程和结论,探讨其对AI推理领域及产品开发的深远影响。

来自主题: AI技术研报
5319 点击    2024-11-27 09:25
这个访谈回应了所有AI焦点问题,他是AI最重要论文的联合作者

这个访谈回应了所有AI焦点问题,他是AI最重要论文的联合作者

这个访谈回应了所有AI焦点问题,他是AI最重要论文的联合作者

随着scaling law撞墙新闻爆出,全球科技圈、资本市场关于大模型发展触及天花板的讨论愈演愈烈。那么,AI发展是否放缓?后续又将如何发展?商业模式如何突破?

来自主题: AI资讯
5775 点击    2024-11-27 09:05
神级项目训练GPT-2仅需5分钟,Andrej Karpathy都点赞

神级项目训练GPT-2仅需5分钟,Andrej Karpathy都点赞

神级项目训练GPT-2仅需5分钟,Andrej Karpathy都点赞

今年 4 月,AI 领域大牛 Karpathy 一个仅用 1000 行代码即可在 CPU/fp32 上实现 GPT-2 训练的项目「llm.c」曾经引发机器学习社区的热烈讨论。

来自主题: AI资讯
5487 点击    2024-11-22 10:18
Dario Amodei:Scaling Law 还没遇到上限

Dario Amodei:Scaling Law 还没遇到上限

Dario Amodei:Scaling Law 还没遇到上限

Powerful AI 预计会在 2026 年实现,足够强大的 AI 也能够将把一个世纪的科研进展压缩到 5-10 年实现(“Compressed 21st Century”),在他和 Lex Fridman 的最新对谈中,Dario 具体解释了自己对于 Powerful AI 可能带来的机会的理解,以及 scaling law、RL、Compute Use 等模型训练和产品的细节进行了分享

来自主题: AI资讯
8458 点击    2024-11-22 10:06
自研DPU发布:微软芯片,火力全开

自研DPU发布:微软芯片,火力全开

自研DPU发布:微软芯片,火力全开

在今天的Ignite开发者大会上,微软发布了两款专为其数据中心基础设施设计的新芯片:Azure Integrated HSM和Azure Boost DPU。

来自主题: AI资讯
4629 点击    2024-11-20 13:51
从未见过现实世界数据,MIT在虚拟环境中训练出机器狗,照样能跑酷

从未见过现实世界数据,MIT在虚拟环境中训练出机器狗,照样能跑酷

从未见过现实世界数据,MIT在虚拟环境中训练出机器狗,照样能跑酷

如今,机器人学习最大的瓶颈是缺乏数据。与图片和文字相比,机器人的学习数据非常稀少。目前机器人学科的主流方向是通过扩大真实世界中的数据收集来尝试实现通用具身智能,但是和其他的基础模型,比如初版的 StableDiffusion 相比,即使是 pi 的数据都会少七八个数量级。

来自主题: AI技术研报
7344 点击    2024-11-18 09:14
NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。

来自主题: AI技术研报
3069 点击    2024-11-16 15:21