
独家|陈天桥布局端到端Deep Research生态赛道,MiroMind发布全栈开源深度研究项目ODR
独家|陈天桥布局端到端Deep Research生态赛道,MiroMind发布全栈开源深度研究项目ODR全栈开源生态系统:涵盖Agent框架(MiroFlow)、模型(MiroThinker)、数据(MiroVerse)和训练基础设施(MiroTrain / MiroRL)的全栈开源方案,所有组件和流程均开放共享,便于学习、复用与二次开发。
全栈开源生态系统:涵盖Agent框架(MiroFlow)、模型(MiroThinker)、数据(MiroVerse)和训练基础设施(MiroTrain / MiroRL)的全栈开源方案,所有组件和流程均开放共享,便于学习、复用与二次开发。
互联网技术的发展极大地便利了我们的生活,但许多网络任务重复繁琐,降低了效率。为了解决这一问题,研究人员正在开发基于大型基础模型(LFMs)的智能体——WebAgents,通过感知环境、规划推理和执行交互来完成用户指令,显著提升便利性。香港理工大学的研究人员从架构、训练和可信性等角度,总结了WebAgents的代表性方法,全面梳理了相关研究进展。
随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
上上周我们一起测试了六款视频Agent, Agent们手里有一堆音频、视频、剪辑、生图等工具,由他们决定调用顺序成片
从“模型即服务”(MaaS)到“智能体即服务”(AaaS)的转变,标志着AI行业进入了新的发展阶段。我们不再满足于AI的“对话能力”,而是期望它能成为自主完成复杂任务的“全能机器人”。
当前,大型语言模型(LLM)在软件工程领域的应用日新月异,尤其是在自动修复 Bug 方面,以 SWE-bench 为代表的基准测试展示了 AI 惊人的潜力。然而,软件开发远不止于修 Bug,功能开发与迭代才是日常工作的重头戏。
一句话概括,花大价钱请来的AI智能体天天搁那儿“过度思考”,这篇论文教你如何让它“该省省该花花”,别再当冤大头了,当你给智能体卸掉复杂记忆/冗余规划这些"奢侈品"后,发现它跑得比香港记者还快还便宜。
近一年来,围绕人工智能(AI)、生成式 AI(GenAI)和大语言模型(LLM)的炒作愈演愈烈,大众的兴趣翻了一番,针对 AI 的投资激增,各国政府也采取了更加明确的立场。根据一些人的说法,AI 与人类的未来息息相关。
过去三十年,互联网经历了从静态网页到智能推荐的深刻演变。如今,我们正站在互联网的另一个重大转折点上。 这一转折,来自一种全新的范式设想 —— Agentic Web,一个由 AI 智能体组成的、目标导向型的互联网系统。在这个新框架中,用户不再手动浏览网页、点击按钮,而是通过自然语言向智能体发出一个目标,AI 会自主规划、搜索、调用服务、协调其他智能体,最终完成复杂任务。
全网疯玩Genie3,惊叹:这才是真正的大世界!距离上一代Genie2,才刚刚过去7个多月,谷歌世界模型就像开了倍速进化