Perplexity推出世界首个AI专利智能体
Perplexity推出世界首个AI专利智能体美国人工智能初创企业Perplexity宣布推出世界首个AI专利智能体(agent)——Perplexity Patents。Perplexity表示,其目标是带来人人可用的专利智能体,让知识产权情报触手可及。其瞄准的正是专利情报分析的行业痛点:长期以来,工程师、研究人员、专利从业者和企业领导者在进行专利检索时,往往需要结合关键词组合和对专利晦涩行文的掌握,才能获得全面的研究结果。
美国人工智能初创企业Perplexity宣布推出世界首个AI专利智能体(agent)——Perplexity Patents。Perplexity表示,其目标是带来人人可用的专利智能体,让知识产权情报触手可及。其瞄准的正是专利情报分析的行业痛点:长期以来,工程师、研究人员、专利从业者和企业领导者在进行专利检索时,往往需要结合关键词组合和对专利晦涩行文的掌握,才能获得全面的研究结果。
AI看视频也能划重点了!
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?
今天翻 GitHub Trending 的时候,看到一个不怎么眼熟的项目占据榜单第一。 仔细一看,是个多 Agent 舆情分析助手,名字叫「微舆 BettaFish」。再往下拉,发现它 star 已经过万了,而且还是最近十几天突然暴涨。
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
传统智能体系统难以兼顾稳定性和学习能力,斯坦福等学者提出AgentFlow框架,通过模块化和实时强化学习,在推理中持续优化策略,并使小规模模型在多项任务中超越GPT-4o,为AI发展开辟新思路。
2025 年被广泛视为 AI 走向深度应用的关键元年,在这一年里,以多模态生成、Agent 为代表的 AI 技术不断探索更多样、更高效、更贴合用户需求的应用形态。其中重要性愈加凸显的一点是:AI 正在走向产业级价值的系统性兑现。
OpenAI Atlas、Perplexity Comet等AI浏览器的推出,虽提升了网页自动化效率,却也使智能爬虫威胁加剧。南洋理工大学团队研发的WebCloak,创新性地混淆网页结构与语义,打破爬虫技术依赖,为数据安全筑起轻量高效防线,助力抵御新型智能攻击,守护网络安全。
AI健康管理领域的产品层出不穷,功能设计结合大模型甚至Agent也成为当前发展方向。OtterLife,这款AI健康管理产品,将虚拟游戏宠物角色“海獭”融入用户健康习惯养成过程,却在动力略显不足的市场现状下,获得了上线一年用户破百万的亮眼成绩,且用户留存率超过行业平均水平。