
ACL最佳论文幕后的北大人!北大张铭带出顶会常胜军和百亿CEO天团|新智元十周年峰会
ACL最佳论文幕后的北大人!北大张铭带出顶会常胜军和百亿CEO天团|新智元十周年峰会从ICML到ACL,张铭教授的实验室十年两度拿下世界顶会「最佳论文」。甚至连中学生,都能在这里提前卷科研,拿下「小诺贝尔奖」。一间实验室,如何同时孵化论文大奖、百亿企业和未来科学家?这背后,是科研思维与创新教育的独特结合。
从ICML到ACL,张铭教授的实验室十年两度拿下世界顶会「最佳论文」。甚至连中学生,都能在这里提前卷科研,拿下「小诺贝尔奖」。一间实验室,如何同时孵化论文大奖、百亿企业和未来科学家?这背后,是科研思维与创新教育的独特结合。
人类和AI在工作中如何协作?耶鲁和南大的研究人员合作的这篇论文讲清楚了。 这篇论文提出了一个数学框架,通过把工作技能拆分成两个层次来解释这个问题
就在刚刚,NUS研究者呼吁:NeurIPS、ICML、CVPR三大顶会,正在反噬整个AI学术圈!平均每个研究者每年被逼狂发4.5篇论文,已经身心俱疲。总之,顶会模型已经濒临崩溃,是时候踩刹车了!
近年来,大语言模型(LLM)的能力越来越强,但它们的“饭量”也越来越大。这个“饭量”主要体现在计算和内存上。当模型处理的文本越来越长时,一个叫做“自注意力(Self-Attention)”的核心机制会导致计算量呈平方级增长。这就像一个房间里的人开会,如果每个人都要和在场的其他所有人单独聊一遍,那么随着人数增加,总的对话次数会爆炸式增长。
在人工智能模型规模持续扩大的今天,数据集蒸馏(Dataset Distillation,DD)方法能够通过使用更少的数据,达到接近完整数据的训练效果,提升模型训练效率,降低训练成本。
还在为 LoRA 训练不稳定、模型融合效果差、剪枝后性能大降而烦恼吗?来自香港城市大学、南方科技大学、浙江大学等机构的研究者们提出了一种简单的渐进式训练策略,CoTo,通过在训练早期随机失活一部分适配器,并逐渐提高其激活概率,有效缓解了层级不均衡问题,并显著增强了模型在多任务融合和剪枝等操作上的鲁棒性和有效性。该工作已被机器学习顶会 ICML 2025 接收。
CostFilter-AD通过构建异常代价体并滤波来优化异常检测,能精准识别微小缺陷,无需缺陷样本训练。可作为通用插件提升现有检测系统,帮助工厂提前发现缺陷,提高产品质量。
大语言模型(Large Language Model, LLM)在复杂推理任务中表现卓越。借助链式思维(Chain-of-Thought, CoT),LLM 能够将复杂问题分解为简单步骤,充分探索解题思路并得出正确答案。LLM 已在多个基准上展现出优异的推理能力,尤其是数学推理和代码生成。
大语言模型(Large Language Models,LLMs)技术的迅猛发展,正在深刻重塑医疗行业。医疗领域正成为这一前沿技术的 “新战场” 之一。大模型具备强大的文本理解与生成能力,能够快速读取医学文献、解读病历记录,甚至基于患者表述生成初步诊断建议,有效辅助医生提升诊断的准确性与效率。
如何让AI像人一样,仅凭少量演示,就能稳健适应复杂多变的真实场景? 美国东北大学和波士顿动力RAI提出了HEP(Hierarchical Equivariant Policy via Frame Transfer)框架,首创“坐标系转移接口”,让机器人学习更高效、泛化更灵活。