
ICML Spotlight | MCU:全球首个生成式开放世界基准,革新通用AI评测范式
ICML Spotlight | MCU:全球首个生成式开放世界基准,革新通用AI评测范式开发能在开放世界中完成多样任务的通用智能体,是AI领域的核心挑战。开放世界强调环境的动态性及任务的非预设性,智能体必须具备真正的泛化能力才能稳健应对。然而,现有评测体系多受限于任务多样化不足、任务数量有限以及环境单一等因素,难以准确衡量智能体是否真正「理解」任务,或仅是「记住」了特定解法。
开发能在开放世界中完成多样任务的通用智能体,是AI领域的核心挑战。开放世界强调环境的动态性及任务的非预设性,智能体必须具备真正的泛化能力才能稳健应对。然而,现有评测体系多受限于任务多样化不足、任务数量有限以及环境单一等因素,难以准确衡量智能体是否真正「理解」任务,或仅是「记住」了特定解法。
在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
长文本能力对语言模型(LM,Language Model)尤为重要,试想,如果 LM 可以处理无限长度的输入文本,我们可以预先把所有参考资料都喂给 LM,或许 LM 在应对人类的提问时就会变得无所不能。
自 OpenAI 发布 Sora 以来,AI 视频生成技术进入快速爆发阶段。凭借扩散模型强大的生成能力,我们已经可以看到接近现实的视频生成效果。但在模型逼真度不断提升的同时,速度瓶颈却成为横亘在大规模应用道路上的最大障碍。
从 2023 年的 Sora 到如今的可灵、Vidu、通义万相,AIGC 生成式技术的魔法席卷全球,打开了 AI 应用落地的大门。
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。
大型语言模型(LLMs)在上下文知识理解方面取得了令人瞩目的成功。
即便是最强大的语言模型(LLM),仍会偶尔出现推理错误。除了通过提示词让模型进行不太可靠的多轮自我纠错外,有没有更系统的方法解决这一问题呢?
宾夕法尼亚大学苏炜杰教授团队在ICML 2023会议中进行实验显示,经过作者自评校准后,审稿分数的误差降低超过20%。
大模型对现实世界,可以形成自己的理解!