
OpenAI超级对齐团队再发「绝唱」!首提「证明者-验证者」博弈,训练GPT说人话
OpenAI超级对齐团队再发「绝唱」!首提「证明者-验证者」博弈,训练GPT说人话当我们不停在CoT等领域大下苦功、试图提升LLM推理准确性的同时,OpenAI的对齐团队从另一个角度发现了华点——除了准确性,生成答案的清晰度、可读性和可验证性也同样重要。
当我们不停在CoT等领域大下苦功、试图提升LLM推理准确性的同时,OpenAI的对齐团队从另一个角度发现了华点——除了准确性,生成答案的清晰度、可读性和可验证性也同样重要。
微软推出AI模型SpreadsheetLLM,提升电子表格处理效率。
具身智能是过去一年中和 LLM 一样受到市场高度关注的领域,通用机器人领域什么时候会出现「iPhone 时刻」?这是所有人都关注的问题。拾象团队在过去一年中也深度追踪通用机器人和机器人 foundation model 的进展。本篇文章是我们对机器人领域研究的开源。
自回归解码已经成为了大语言模型(LLMs)的事实标准,大语言模型每次前向计算需要访问它全部的参数,但只能得到一个token,导致其生成昂贵且缓慢。
13.8和13.11哪个大?这个问题不光难倒了部分人类,还让一票大模型折戟。AI如今都能做AI奥数题了,但简单的常识问题对它们依然难如登天。其实,无论是比大小,还是卷心菜难题,都揭示了LLM在token预测上的一个重大缺陷。
大模型理解、推理Excel,现在变得更加精准了。
把因果链展示给 LLM,它就能学会公理。
LLM 很强大,但也存在一些明显缺点,比如幻觉问题、可解释性差、抓不住问题重点、隐私和安全问题等。检索增强式生成(RAG)可大幅提升 LLM 的生成质量和结果有用性。
最近,多个机构学者合著的一篇研究为AI的规模化指了一条新路:物理神经网络(PNN),这一新兴的前沿领域还鲜少有人涉足,但绝对值得深耕!AI模型再扩展1000倍的秘密可能就藏在这里。
人会有幻觉,大型语言模型也会有幻觉。近日,OpenAI 安全系统团队负责人 Lilian Weng 更新了博客,介绍了近年来在理解、检测和克服 LLM 幻觉方面的诸多研究成果。