
CLIP被淘汰了?LeCun谢赛宁新作,多模态训练无需语言监督更强!
CLIP被淘汰了?LeCun谢赛宁新作,多模态训练无需语言监督更强!LeCun谢赛宁等研究人员通过新模型Web-SSL验证了SSL在多模态任务中的潜力,证明其在扩展模型和数据规模后,能媲美甚至超越CLIP。这项研究为无语言监督的视觉预训练开辟新方向,并计划开源模型以推动社区探索。
LeCun谢赛宁等研究人员通过新模型Web-SSL验证了SSL在多模态任务中的潜力,证明其在扩展模型和数据规模后,能媲美甚至超越CLIP。这项研究为无语言监督的视觉预训练开辟新方向,并计划开源模型以推动社区探索。
扩展无语言的视觉表征学习。
如今,美国AI社区许多人已公认:接下来几个月,中国将会出现一波开源AI模型的浪潮!很多业内人士和大V干脆陷入了「冷战2.0」恐慌,呼吁要开放无限的能源、无限的算力和更简单的立法。LeCun则表示,DeepSeek击败美国,其实不过是中国内部竞争的副产品而已。
何恺明LeCun联手:Transformer不要归一化了,论文已入选CVPR2025。
Transformer架构迎来历史性突破!刚刚,何恺明LeCun、清华姚班刘壮联手,用9行代码砍掉了Transformer「标配」归一化层,创造了性能不减反增的奇迹。
LeCun最新访谈,对DeepSeek一顿猛夸。 他表示,DeepSeek是一项很出色的成果,它的开源不只是成果创造者受益,全世界都能从中受益。
AI如何理解物理世界?视频联合嵌入预测架构V-JEPA带来新突破,无需硬编码核心知识,在自监督预训练中展现出对直观物理的理解,超越了基于像素的预测模型和多模态LLM。
近日,Meta等机构发表的论文介绍了一种通过进化算法构造高质量数据集的方法:拒绝指令偏好(RIP),得到了Yann LeCun的转赞。相比未经过滤的数据,使用RIP构建的数据集让模型在多个基准测试中都实现了显著提升。
“放弃生成式模型,不研究LLM(大语言模型),我们没办法只通过文本训练让AI达到人类的智慧水平。”近日,Meta首席AI科学家杨立昆(Yann LeCun)在法国巴黎的2025年人工智能行动峰会上再一次炮轰了生成式AI。
在当今的 AI 领域,图灵奖得主 Yann LeCun 算是一个另类。即便眼见着自回归 LLM 的能力越来越强大,能解决的任务也越来越多,他也依然坚持自己的看法:自回归 LLM 没有光明的未来。