
字节新神器 PromptPilot,提示词优化竟然如此简单
字节新神器 PromptPilot,提示词优化竟然如此简单在计算机科学领域,有一句英文谚语——「Garbage in, Garbage out」。
在计算机科学领域,有一句英文谚语——「Garbage in, Garbage out」。
现在市面上有46种Prompt工程技术,但真正能在软件工程任务中发挥作用的,可能只有那么几种。来自巴西联邦大学、加州大学尔湾分校等顶级院校的研究者们,花了大量时间和计算资源,调研了58种,整理了46种,最终筛选测试了14种主流提示技术在10个软件工程任务上的表现,用了4个不同的大模型(包括咱们的Deepseek-V3),总共跑了2000多次实验。
宾夕法尼亚大学沃顿商学院生成式AI实验室刚刚发布了两份重磅研究报告,通过严格的科学实验揭示了一个令人震惊的事实:我们可能一直在用错误的方式与AI对话。这不是胡说八道,而是基于近4万次实验得出的硬核数据推理的结论。
昨天YC一个访谈《State-Of-The-Art Prompting For AI Agents》,专门讲他们投资的一家客服公司,公开了他们提示词的写法,这应该也属于第一家吧。
近两年,随着AI的火热发展,“提示词(prompt)”这个词也被普通人熟知。
时隔 3 个月,Anthropic 上新了 Claude 4 模型。并同步了 Claude 4 Opus 和 Sonnet 两个模型的最新系统提示词。(Opus 是旗舰版、Sonnet 是主力版)经过对照,Claude 4 Opus 与 Sonnet 版本的系统提示词,基本没有区别,所以只需要看 Opus 的提示词即可:
看到朋友在网上的分享: 用Deep Research 的时候就怕在研究来源中看到ZHIHU、SINA、CSDN 这样的网址,这简直就是报告结果的灾难! 垃圾进 垃圾出。。 在大模型还没有进化出反思修正和推理新知识能力的时候,务必屏蔽掉低质量信息源,AI无脑文越演越烈。
近年来,生成式人工智能(Generative AI)技术的突破性进展,特别是文本到图像 T2I 生成模型的快速发展,已经使 AI 系统能够根据用户输入的文本提示(prompt)生成高度逼真的图像。从早期的 DALL・E 到 Stable Diffusion、Midjourney 等模型,这一领域的技术迭代呈现出加速发展的态势。
只需一组公开的prompt,ChatGPT看图猜地点的能力又科幻般进化了!
最近,Google 官方发布了一份长达 69 页的【Prompt Engineering 白皮书】,可以说是目前最系统、最权威的“AI 沟通指南”了。我们也是第一时间翻译好了这本书,准备【免费】送给大家!