
全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!
全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!当下,视频生成备受关注,有望成为处理物理知识的 “世界模型” (World Model),助力自动驾驶、机器人等下游任务。然而,当前模型在从 “生成” 迈向世界建模的过程中,存在关键短板 —— 对真实世界物理规律的刻画能力不足。
当下,视频生成备受关注,有望成为处理物理知识的 “世界模型” (World Model),助力自动驾驶、机器人等下游任务。然而,当前模型在从 “生成” 迈向世界建模的过程中,存在关键短板 —— 对真实世界物理规律的刻画能力不足。
现在,豆包大模型团队联合北京交通大学、中国科学技术大学提出了VideoWorld。
ETH Zurich等机构提出了推理语言模型(RLM)蓝图,超越LLM局限,更接近AGI,有望人人可用o3这类强推理模型。
在过去的两年里,城市场景生成技术迎来了飞速发展,一个全新的概念 ——世界模型(World Model)也随之崛起。当前的世界模型大多依赖 Video Diffusion Models(视频扩散模型)强大的生成能力,在城市场景合成方面取得了令人瞩目的突破。然而,这些方法始终面临一个关键挑战:如何在视频生成过程中保持多视角一致性?
2028年,预计高质量数据将要耗尽,数据Scaling走向尽头。2025年,测试时计算将开始成为主导AI通向通用人工智能(AGI)的新一代Scaling Law。近日,CMU机器学习系博客发表新的技术文章,从元强化学习(meta RL)角度,详细解释了如何优化LLM测试时计算。
Aria-UI通过纯视觉理解,实现了GUI指令的精准定位,无需依赖后台数据,简化了部署流程;在AndroidWorld和OSWorld等权威基准测试中表现出色,分别获得第一名和第三名,展示了强大的跨平台自动化能力。
老婆饼里没有老婆,夫妻肺片里没有夫妻,RLHF 里也没有真正的 RL。在最近的一篇博客中,德克萨斯大学奥斯汀分校助理教授 Atlas Wang 分享了这样一个观点。
在人类的认知中,从单张图像中感知并想象三维世界是一项天然的能力。我们能直观地估算距离、形状,猜想被遮挡区域的几何信息。然而,将这一复杂的认知过程赋予机器却充满挑战。
在人工智能领域,具有挑战性的模拟环境对于推动多智能体强化学习(MARL)领域的发展至关重要。在合作式多智能体强化学习环境中,大多数算法均通过星际争霸多智能体挑战(SMAC)作为实验环境来验证算法的收敛和样本利用率。
GPT-4o仅得分64.5,其余模型均未及格! 全面、细粒度评估模型多模态长文档理解能力的评测集来了~ 名为LongDocURL,集成了长文档理解、数值推理和跨元素定位三个主任务,并包含20个细分子任务。