
清华第三代Sage注意力发布!提速5倍,精度不降,训推都能用
清华第三代Sage注意力发布!提速5倍,精度不降,训推都能用清华大学朱军教授团队提出SageAttention3,利用FP4量化实现推理加速,比FlashAttention快5倍,同时探索了8比特注意力用于训练任务的可行性,在微调中实现了无损性能。
来自主题: AI技术研报
6115 点击 2025-07-08 12:08
清华大学朱军教授团队提出SageAttention3,利用FP4量化实现推理加速,比FlashAttention快5倍,同时探索了8比特注意力用于训练任务的可行性,在微调中实现了无损性能。
随着大型模型需要处理的序列长度不断增加,注意力运算(Attention)的时间开销逐渐成为主要开销。
大模型中,线性层的低比特量化已经逐步落地。然而,对于注意力模块,目前几乎各个模型都还在用高精度(例如 FP16 或 FP32)的注意力运算进行训练和推理。并且,随着大型模型需要处理的序列长度不断增加,Attention(注意力运算)的时间开销逐渐成为主要开销。
又快又准,即插即用!清华8比特量化Attention,两倍加速于FlashAttention2,各端到端任务均不掉点!