
谷歌重磅推出全新Scaling Law,抢救Transformer!3万亿美元AI面临岔路
谷歌重磅推出全新Scaling Law,抢救Transformer!3万亿美元AI面临岔路谷歌团队发现了全新Scaling Law!新方法DiLoCo被证明更好、更快、更强,可在多个数据中心训练越来越大的LLM。
谷歌团队发现了全新Scaling Law!新方法DiLoCo被证明更好、更快、更强,可在多个数据中心训练越来越大的LLM。
大语言模型(LLM)近年来凭借训练时扩展(train-time scaling)取得了显著性能提升。然而,随着模型规模和数据量的瓶颈显现,测试时扩展(test-time scaling)成为进一步释放潜力的新方向。
近年来,大语言模型 LLMs 在多种任务上的卓越表现已得到广泛认可。然而,要实现其高效部署,精细的超参数优化至关重要。为了探究最佳超参数的规律,我们开展了大规模的实证研究,通过在不同配置上进行网格搜索,我们揭示了一套通用的最优超参数缩放定律(Optimal Hyperparameter Scaling Law)。
谷歌发布了1000亿文本-图像对数据集,是此前类似数据集的10倍,创下新纪录!基于新数据集,发现预训练Scaling Law,虽然对模型性能提升不明显,但对于小语种等其他指标提升明显。让ViT大佬翟晓华直呼新发现让人兴奋!
回顾 AGI 的爆发,从最初的 pre-training (model/data) scaling,到 post-training (SFT/RLHF) scaling,再到 reasoning (RL) scaling,找到正确的 scaling 维度始终是问题的本质。
Hugging Face发布了「超大规模实战手册」,在512个GPU上进行超过4000个scaling实验。联创兼CEO Clement对此感到十分自豪。
DeepSeek和xAI相继用R1和Grok-3证明:预训练Scaling Law不是OpenAI的护城河。将来95%的算力将用在推理,而不是现在的训练和推理各50%。OpenAI前途不明,生死难料!
在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
当 Scaling Law 在触顶边界徘徊之时,强化学习为构建更强大的大模型开辟出了一条新范式。
谷歌团队发布LLM硬核技术教科书,从「系统视图」揭秘LLM Scaling的神秘面纱。Jeff Dean强调书中藏着谷歌最强AI模型Gemini训练的更多信息。