
字节Seed发布扩散语言模型,推理速度达2146 tokens/s,比同规模自回归快5.4倍
字节Seed发布扩散语言模型,推理速度达2146 tokens/s,比同规模自回归快5.4倍用扩散模型写代码,不仅像开了倍速,改起来还特别灵活! 字节Seed最新发布扩散语言模型Seed Diffusion Preview,这款模型主要聚焦于代码生成领域,它的特别之处在于采用了离散状态扩散技术,在推理速度上表现出色。
用扩散模型写代码,不仅像开了倍速,改起来还特别灵活! 字节Seed最新发布扩散语言模型Seed Diffusion Preview,这款模型主要聚焦于代码生成领域,它的特别之处在于采用了离散状态扩散技术,在推理速度上表现出色。
放眼当下,到底哪个芯片跑满血DeepSeek是最快的? 答案很意外——不是你以为的英伟达,而是一家国产GPU。 因为现在它的速度,已经直接来到了100 tokens/s!
「Tokenization(分词)是 Transformer 模型为弥补自身缺陷不得不戴上的枷锁。」
大模型记忆管理和优化框架是当前各大厂商争相优化的热点方向,MemOS 相比现有 OpenAI 的全局记忆在大模型记忆评测集上呈现出显著的提升,平均准确性提升超过 38.97%,Tokens 的开销进一步降低 60.95%,一举登顶记忆管理的 SOTA 框架,特别是在考验框架时序建模与检索能力的时序推理任务上,提升比例更是达到了 159%,相当震撼!
最近,我的AI交流群和别的一些AI群都炸锅了,话题的焦点是MiniMax-M1
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
1+1等于几?
是的,秘塔AI搜索推出了全新“极速”模型。通过在GPU上进行kernel fusion,以及在CPU上进行动态编译优化,我们在单张H800 GPU上实现了最高400 tokens/秒的响应速度,大部分问题2秒内就能答完。
谷歌又放新大招了,将图像生成常用的“扩散技术”引入语言模型,12秒能生成1万tokens。
在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。