多模态模型评测框架lmms-eval发布!全面覆盖,低成本,零污染
多模态模型评测框架lmms-eval发布!全面覆盖,低成本,零污染随着大模型研究的深入,如何将其推广到更多的模态上已经成为了学术界和产业界的热点。最近发布的闭源大模型如 GPT-4o、Claude 3.5 等都已经具备了超强的图像理解能力,LLaVA-NeXT、MiniCPM、InternVL 等开源领域模型也展现出了越来越接近闭源的性能。
随着大模型研究的深入,如何将其推广到更多的模态上已经成为了学术界和产业界的热点。最近发布的闭源大模型如 GPT-4o、Claude 3.5 等都已经具备了超强的图像理解能力,LLaVA-NeXT、MiniCPM、InternVL 等开源领域模型也展现出了越来越接近闭源的性能。
检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
基于评测维度,考虑到各评测集关注的评测维度,可以将其划分为通用评测基准和具体评测基准。
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
当前大语言模型(LLM)的评估方法受到数据污染问题的影响,导致评估结果被高估,无法准确反映模型的真实能力。北京大学等提出的KIEval框架,通过知识基础的交互式评估,克服了数据污染的影响,更全面地评估了模型在知识理解和应用方面的能力。
自从大模型爆火以来,语义检索也逐渐成为一项热门技术。尤其是在 RAG(retrieval augmented generation)应用中,检索结果的相关性直接决定了 AI 生成的最终效果。
基于 Transformer架构的大型语言模型在各种基准测试中展现出优异性能,但数百亿、千亿乃至万亿量级的参数规模会带来高昂的服务成本。例如GPT-3有1750亿参数,采用FP16存储,模型大小约为350GB,而即使是英伟达最新的B200 GPU 内存也只有192GB ,更不用说其他GPU和边缘设备。
智东西4月19日消息,Meta推出迄今为止能力最强的开源大模型Llama 3系列,发布8B和70B两个版本。 Llama 3在一众榜单中取得开源SOTA(当前最优效果)。Llama 3 8B在MMLU、GPQA、HumanEval、GSM-8K等多项基准上超过谷歌Gemma 7B和Mistral 7B Instruct。
就在刚刚,马斯克Grok大模型宣布重大升级。
阿里大模型,再次开源大放送——发布Qwen1.5版本,直接放出六种尺寸。