1人顶1个Infra团队!OpenAI前CTO新招,让大模型训练跌成白菜价
1人顶1个Infra团队!OpenAI前CTO新招,让大模型训练跌成白菜价当大模型竞争转向后训练,继续为闲置显卡烧钱无异于「慢性自杀」。如今,按Token计费的Serverless模式,彻底终结了算力租赁的暴利时代,让算法工程师真正拥有了定义物理世界的权利。
当大模型竞争转向后训练,继续为闲置显卡烧钱无异于「慢性自杀」。如今,按Token计费的Serverless模式,彻底终结了算力租赁的暴利时代,让算法工程师真正拥有了定义物理世界的权利。
当 OpenAI 前 CTO Mira Murati 创立的 Thinking Machines Lab (TML) 用 Tinker 创新性的将大模型训练抽象成 forward backward,optimizer step 等⼀系列基本原语,分离了算法设计等部分与分布式训练基础设施关联,
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
你有没有遇到过这样的算力困境:买了 GPU,用不了几次就闲置烧钱,偶尔想用的时候却一卡难求?
近日,无问芯穹发起了一次推理系统开源节,连续开源了三个推理工作,包括加速端侧推理速度的 SpecEE、计算分离存储融合的 PD 半分离调度新机制 Semi-PD、低计算侵入同时通信正交的计算通信重叠新方法 FlashOverlap,为高效的推理系统设计提供多层次助力。下面让我们一起来对这三个工作展开一一解读:
你是否注意过人类观察世界的独特方式?
单视角三维场景重建一直是计算机视觉领域中的核心挑战之一,尤其在捕捉高保真室外场景细节时,如何确保结构一致性和几何精度显得尤为困难。
强化学习(RL)对大模型复杂推理能力提升有关键作用,然而,RL 复杂的计算流程以及现有系统局限性,也给训练和部署带来了挑战。