
深度解密:Anthropic多智能体系统背后的 原理及提示词工程(建议收藏)
深度解密:Anthropic多智能体系统背后的 原理及提示词工程(建议收藏)Anthropic 前两天发了一篇文章,重点讨论了他们是如何通过多智能体系统来构建 claude 的“深度研究功能”。
Anthropic 前两天发了一篇文章,重点讨论了他们是如何通过多智能体系统来构建 claude 的“深度研究功能”。
昨天最热的的两篇文章是关于多智能体系统构建的讨论。 先是 Anthropic 发布了他们在深度搜索多智能体构建过程中的一些经验,具体:包括多智能体系统的优势、架构概览、提示工程与评估、智能体的有效评估等方面。
自Agent火了以后,有关"记忆"的框架如雨后春笋般涌现,但绝大多数仍是为"单兵作战"设计,难以适应需要复杂协作、信息交互量暴增10倍的多智能体系统(MAS)
研究多智能体必读指南。Anthropic 发布了他们如何使用多个 Claude AI 智能体构建多智能体研究系统的精彩解释。
为了推动该领域加速健康发展,由上海交通大学、上海 AI 实验室、牛津大学、普林斯顿大学、Meta 等十个机构联合推出的 MASLab,带来首个统一、全面、研究友好的大模型多智能体系统代码库:
在多智能体AI系统中,一旦任务失败,开发者常陷入「谁错了、错在哪」的谜团。PSU、杜克大学与谷歌DeepMind等机构首次提出「自动化失败归因」,发布Who&When数据集,探索三种归因方法,揭示该问题的复杂性与挑战性。
多AI智能体系统的复杂构建与优化,长期以来是用智能体解决科研问题和场景落地的瓶颈。来自英国格拉斯哥大学的研究团队发布了全球首个AI智能体自进化开源框架EvoAgentX,通过引入自我进化机制,打破了传统多智能体系统在构建和优化中的限制!
MetaMind是一个多智能体框架,专门解决大语言模型在社交认知方面的根本缺陷。传统的 LLM 常常难以应对现实世界中人际沟通中固有的模糊性和间接性,无法理解未说出口的意图、隐含的情绪或文化敏感线索。MetaMind首次使LLMs在关键心理理论(ToM)任务上达到人类水平表现。
今年的4月26日,我们测评了百度新发布的多智能体协作应用心响APP。当时只上线了安卓版,很多网友在线求苹果版链接。
多智能体系统成功锁定