AI资讯新闻榜单内容搜索-多模态大语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 多模态大语言模型
破解多模态大模型“选择困难症”!内部决策机制首次揭秘:在冲突信息间疯狂"振荡"

破解多模态大模型“选择困难症”!内部决策机制首次揭秘:在冲突信息间疯狂"振荡"

破解多模态大模型“选择困难症”!内部决策机制首次揭秘:在冲突信息间疯狂"振荡"

多模态大语言模型(MLLMs)在处理来自图像和文本等多种来源的信息时能力强大 。 然而,一个关键挑战随之而来:当这些模态呈现相互冲突的信息时(例如,图像显示一辆蓝色汽车,而文本描述它为红色),MLLM必须解决这种冲突 。模型最终输出与某一模态信息保持一致的行为,称之为“模态跟随”(modality following)

来自主题: AI技术研报
7304 点击    2025-11-14 13:54
下一代目标检测模型:3B参数MLLM Rex-Omni首度超越Grounding DINO,统一10+视觉任务

下一代目标检测模型:3B参数MLLM Rex-Omni首度超越Grounding DINO,统一10+视觉任务

下一代目标检测模型:3B参数MLLM Rex-Omni首度超越Grounding DINO,统一10+视觉任务

多模态大语言模型(MLLM)在目标定位精度上被长期诟病,难以匹敌传统的基于坐标回归的检测器。近日,来自 IDEA 研究院的团队通过仅有 3B 参数的通用视觉感知模型 Rex-Omni,打破了这一僵局。

来自主题: AI技术研报
5486 点击    2025-11-14 10:18
不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。

来自主题: AI技术研报
9205 点击    2025-10-16 12:31
给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视

来自主题: AI技术研报
6605 点击    2025-09-26 13:30
ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

在科研、新闻报道、数据分析等领域,图表是信息传递的核心载体。要让多模态大语言模型(MLLMs)真正服务于科学研究,必须具备以下两个能力

来自主题: AI技术研报
8191 点击    2025-08-22 10:35
告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

使用过程奖励模型(PRM)强化大语言模型的推理能力已在纯文本任务中取得显著成果,但将过程奖励模型扩展至多模态大语言模型(MLLMs)时,面临两大难题:

来自主题: AI技术研报
7791 点击    2025-07-12 11:58
突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。

来自主题: AI技术研报
8254 点击    2025-07-09 10:59
首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

MLA-Trust 是首个针对图形用户界面(GUI)环境下多模态大模型智能体(MLAs)的可信度评测框架。该研究构建了涵盖真实性、可控性、安全性与隐私性四个核心维度的评估体系,精心设计了 34 项高风险交互任务,横跨网页端与移动端双重测试平台,对 13 个当前最先进的商用及开源多模态大语言模型智能体进行深度评估,系统性揭示了 MLAs 从静态推理向动态交互转换过程中所产生的可信度风险。

来自主题: AI技术研报
7739 点击    2025-07-05 13:02
20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

GRIT能让多模态大语言模型(MLLM)通过生成自然语言和图像框坐标结合的推理链进行「图像思维」,仅需20个训练样本即可实现优越性能!

来自主题: AI技术研报
8329 点击    2025-06-19 11:03