
多模态大模型对齐新范式,10个评估维度全面提升,快手&中科院&南大打破瓶颈
多模态大模型对齐新范式,10个评估维度全面提升,快手&中科院&南大打破瓶颈尽管多模态大语言模型(MLLMs)取得了显著的进展,但现有的先进模型仍然缺乏与人类偏好的充分对齐。这一差距的存在主要是因为现有的对齐研究多集中于某些特定领域(例如减少幻觉问题),是否与人类偏好对齐可以全面提升MLLM的各种能力仍是一个未知数。
尽管多模态大语言模型(MLLMs)取得了显著的进展,但现有的先进模型仍然缺乏与人类偏好的充分对齐。这一差距的存在主要是因为现有的对齐研究多集中于某些特定领域(例如减少幻觉问题),是否与人类偏好对齐可以全面提升MLLM的各种能力仍是一个未知数。
“放弃生成式模型,不研究LLM(大语言模型),我们没办法只通过文本训练让AI达到人类的智慧水平。”近日,Meta首席AI科学家杨立昆(Yann LeCun)在法国巴黎的2025年人工智能行动峰会上再一次炮轰了生成式AI。
在人工智能高速发展的今天,我们似乎迎来了一个"假设爆炸"的时代。大语言模型每天都在产生数以万计的研究假设,它们看似合理,却往往难以验证。这让我不禁想起了20世纪最具影响力的科学哲学家之一——卡尔·波普尔。
在大语言模型领域中,预训练 + 微调范式已经成为了部署各类下游应用的重要基础。在该框架下,通过使用搭低秩自适应(LoRA)方法的大模型参数高效微调(PEFT)技术,已经产生了大量针对特定任务、可重用的 LoRA 适配器。
随着金融机构和专业人士越来越多地将大语言模型(LLMs)纳入其工作流程中,金融领域与人工智能社区之间依然存在显著障碍,包括专有数据和专业知识的壁垒。本文提出了 FinRobot,一种支持多个金融专业化人工智能智能体的新型开源 AI 智能体平台,每个代理均由 LLM 提供动力。
Scale AI 等提出的新基准再次暴露了大语言模型的弱点。
近年来,大语言模型(LLMs)取得了突破性进展,展现了诸如上下文学习、指令遵循、推理和多轮对话等能力。目前,普遍的观点认为其成功依赖于自回归模型的「next token prediction」范式。
近年来,多模态大模型(MLLM)在视觉理解领域突飞猛进,但如何让大语言模型(LLM)低成本掌握视觉生成能力仍是业界难题!
最新大语言模型推理测试引众议,DeepSeek R1常常在提供错误答案前就“我放弃”了?? Cursor刚刚参与了一项研究,他们基于NPR周日谜题挑战(The Sunday Puzzle),构建了一个包含近600个问题新基准测试。
以大语言模型为代表的AI在智力方面已经逐渐逼近甚至超过人类,但能否像人类一样有痛苦、快乐这样的感知呢?近日,谷歌团队和LSE发表了一项研究,他们发现,LLM能够做出避免痛苦的权衡选择,这也许是实现「有意识AI」的第一步。