
第一性原理视角下的MoE推理的经济学分析
第一性原理视角下的MoE推理的经济学分析随着DeepSeek R1、Kimi K2和DeepSeek V3.1混合专家(MoE)模型的相继发布,它们已成为智能前沿领域大语言模型(LLM)的领先架构。由于其庞大的规模(1万亿参数及以上)和稀疏计算模式(每个token仅激活部分参数而非整个模型),MoE式LLM对推理工作负载提出了重大挑战,显著改变了底层的推理经济学。
随着DeepSeek R1、Kimi K2和DeepSeek V3.1混合专家(MoE)模型的相继发布,它们已成为智能前沿领域大语言模型(LLM)的领先架构。由于其庞大的规模(1万亿参数及以上)和稀疏计算模式(每个token仅激活部分参数而非整个模型),MoE式LLM对推理工作负载提出了重大挑战,显著改变了底层的推理经济学。
如今,人工智能已经成为科技发展的主流,尤其是 ChatGPT 问世以来,大语言模型(LLM)正在深刻影响社会、企业和个人的方方面面。
当前基于大语言模型(LLM)的智能体构建通过推动自主科学研究推动 AI4S 迅猛发展,催生一系列科研智能体的构建与应用。然而人工智能与自然科学研究之间认知论与方法论的偏差,对科研智能体系统的设计、训练以及验证产生着较大阻碍。
谷歌DeepMind最新Nature王炸,直接把Gemini版大模型PH-LLM调教成了「AI健康私教」,把可穿戴冷冰冰的数据,直接变成睡眠健身建议,结果准确率暴打人类医生。
大语言模型正加速重塑软件工程领域的各个环节,从需求分析到代码生成,再到自动化测试,几乎无所不能,但衡量这些模型到底「好不好用」、「好在哪里」、「还有哪些短板」,一直缺乏系统、权威的评估工具。
当大语言模型(LLM)走向千行百业,推理效率与显存成本的矛盾日益尖锐。
近日,随着新一代大语言模型(LLM)的一波更新,开源大模型再次成为了热门讨论话题。软件工程师、自媒体 Rohan Paul 发现了一个惊人的现象:Design Arena 排行榜上排名前十几位开源 AI 模型全部来自中国。
如果我们的教科书里包含大量的污言秽语,那么我们能学好语言吗?这种荒唐的问题却出现在最先进 ChatGPT 系列模型的学习过程中。
近年来,大语言模型(LLMs)展现出强大的语言理解与生成能力,推动了文本生成、代码生成、问答、翻译等任务的突破。代表性模型如 GPT、Claude、Gemini、DeepSeek、Qwen 等,已经深刻改变了人机交互方式。
AI一日,人间一年。 大语言模型的战局刚刚尘埃落定,Agent的热潮又汹涌而至。