AI资讯新闻榜单内容搜索-大语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 大语言模型
用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

早在去年10月底IBM推出了PDL声明式提示编程语言,本篇是基于PDL的一种对Agent的自动优化方法,是工业界前沿的解决方案。当你在开发基于大语言模型的Agent产品时,是否曾经在提示模式选择和优化上浪费了大量时间?在各种提示模式(Zero-Shot、CoT、ReAct、ReWOO等)中选择最佳方案,再逐字斟酌提示内容,这一过程不仅耗时,而且常常依赖经验和直觉而非数据驱动的决策。

来自主题: AI技术研报
6013 点击    2025-04-16 09:18
中文大模型幻觉测评系列:事实性幻觉测评结果发布!

中文大模型幻觉测评系列:事实性幻觉测评结果发布!

中文大模型幻觉测评系列:事实性幻觉测评结果发布!

SuperCLUE-Fact是专门评估大语言模型在中文短问答中识别和应对事实性幻觉的测试基准。测评任务包括知识、常识、对抗性和上下文幻觉。

来自主题: AI资讯
8275 点击    2025-04-15 17:04
什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。

来自主题: AI技术研报
7037 点击    2025-04-15 14:29
过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。

来自主题: AI技术研报
7052 点击    2025-04-14 14:39
全球首个!中科院推出合成生物AI大语言模型,网页版已免费上线!

全球首个!中科院推出合成生物AI大语言模型,网页版已免费上线!

全球首个!中科院推出合成生物AI大语言模型,网页版已免费上线!

中国科学院深圳先进技术研究院娄春波团队与北京大学定量生物学中心钱珑团队成功推出一款生物制造大语言模型SYMPLEX。SYMPLEX是全球首个面向合成生物学元件挖掘与生物制造应用的大语言模型。

来自主题: AI资讯
6972 点击    2025-04-13 21:07
7B小模型写好学术论文,新框架告别AI引用幻觉,实测100%学生认可引用质量

7B小模型写好学术论文,新框架告别AI引用幻觉,实测100%学生认可引用质量

7B小模型写好学术论文,新框架告别AI引用幻觉,实测100%学生认可引用质量

学术写作通常需要花费大量精力查询文献引用,而以ChatGPT、GPT-4等为代表的通用大语言模型(LLM)虽然能够生成流畅文本,但经常出现“引用幻觉”(Citation Hallucination),即模型凭空捏造文献引用。这种现象严重影响了学术论文的可信度与专业性。

来自主题: AI技术研报
7025 点击    2025-04-11 10:20
用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

用思维干预直接干预LRM内部推理,三种方式实现DeepSeek-R1有效控制。 | 最新

推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。

来自主题: AI技术研报
1852 点击    2025-04-08 08:50