AI资讯新闻榜单内容搜索-大语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 大语言模型
推理正确率下降65.5%!斯坦福、MIT等用「不等式」拷问AI逻辑极限

推理正确率下降65.5%!斯坦福、MIT等用「不等式」拷问AI逻辑极限

推理正确率下降65.5%!斯坦福、MIT等用「不等式」拷问AI逻辑极限

大语言模型在数学证明中常出现推理漏洞,如跳步或依赖特殊值。斯坦福等高校团队提出IneqMath基准,将不等式证明拆解为可验证的子任务。结果显示,模型的推理正确率远低于答案正确率,暴露出其在数学推理上的缺陷。

来自主题: AI技术研报
8419 点击    2025-06-23 14:41
大模型到底是怎么「思考」的?第一篇系统性综述SAE的文章来了

大模型到底是怎么「思考」的?第一篇系统性综述SAE的文章来了

大模型到底是怎么「思考」的?第一篇系统性综述SAE的文章来了

在 ChatGPT 等大语言模型(LLMs)席卷全球的今天,越来越多的研究者意识到:我们需要的不只是 “会说话” 的 LLM,更是 “能解释” 的 LLM。

来自主题: AI技术研报
8186 点击    2025-06-22 16:25
知识储备≠模型能力!DeepMind强化学习微调:大幅缩小「知行差距」

知识储备≠模型能力!DeepMind强化学习微调:大幅缩小「知行差距」

知识储备≠模型能力!DeepMind强化学习微调:大幅缩小「知行差距」

大语言模型(LLMs)在决策场景中常因贪婪性、频率偏差和知行差距表现欠佳。研究者提出强化学习微调(RLFT),通过自我生成的推理链(CoT)优化模型,提升决策能力。实验表明,RLFT可增加模型探索性,缩小知行差距,但探索策略仍有改进空间。

来自主题: AI技术研报
6567 点击    2025-06-22 11:34
AI哪怕答案正确,逻辑链却惨不忍睹,奥数级不等式证明成功率不到50%| 斯坦福&伯克利&MIT

AI哪怕答案正确,逻辑链却惨不忍睹,奥数级不等式证明成功率不到50%| 斯坦福&伯克利&MIT

AI哪怕答案正确,逻辑链却惨不忍睹,奥数级不等式证明成功率不到50%| 斯坦福&伯克利&MIT

大语言模型解决不等式证明问题时,可以给出正确答案,但大多数时候是靠猜。推理过程经不起推敲,逻辑完全崩溃。

来自主题: AI技术研报
6208 点击    2025-06-20 09:48
20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

20个样本,搞定多模态思维链!UCSC重磅开源:边画框,边思考

GRIT能让多模态大语言模型(MLLM)通过生成自然语言和图像框坐标结合的推理链进行「图像思维」,仅需20个训练样本即可实现优越性能!

来自主题: AI技术研报
7702 点击    2025-06-19 11:03
北航等机构发布最新综述:大语言模型集成 | ArXiv 2025

北航等机构发布最新综述:大语言模型集成 | ArXiv 2025

北航等机构发布最新综述:大语言模型集成 | ArXiv 2025

LLM Ensemble(大语言模型集成)在近年来快速地获得了广泛关注。它指的是在下游任务推理阶段,综合考虑并利用多个大语言模型(每个模型都旨在处理用户查询),从而发挥它们各自的优势。大语言模型的广泛可得性,以及其开箱即用的特性和各个模型所具备的不同优势,极大地推动了 LLM Ensemble 领域的发展。

来自主题: AI技术研报
7936 点击    2025-06-17 17:03
细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

思维链(Chain of Thought, CoT)推理方法已被证明能够显著提升大语言模型(LLMs)在复杂任务中的表现。而在多模态大语言模型(MLLMs)中,CoT 同样展现出了巨大潜力。

来自主题: AI技术研报
8616 点击    2025-06-17 10:21
SFT+RL双管齐下:ReasonGen-R1如何破解文生图「指令不遵」难题?

SFT+RL双管齐下:ReasonGen-R1如何破解文生图「指令不遵」难题?

SFT+RL双管齐下:ReasonGen-R1如何破解文生图「指令不遵」难题?

近年来,链式推理和强化学习已经被广泛应用于大语言模型,让大语言模型的推理能力得到了显著提升。

来自主题: AI技术研报
6367 点击    2025-06-17 10:15