
开启空间智能问答新时代:Spatial-RAG框架来了
开启空间智能问答新时代:Spatial-RAG框架来了当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
智源联手多所顶尖高校发布的多模态向量模型BGE-VL,重塑了AI检索领域的游戏规则。它凭借独创的MegaPairs合成数据技术,在图文检索、组合图像检索等多项任务中,横扫各大基准刷新SOTA。
仅用32B,就击败o1-mini追平671B满血版DeepSeek-R1!阿里深夜重磅发布的QwQ-32B,再次让全球开发者陷入狂欢:消费级显卡就能跑,还一下子干到推理模型天花板!
DeepSeek-R1 作为 AI 产业颠覆式创新的代表轰动了业界,特别是其训练与推理成本仅为同等性能大模型的数十分之一。多头潜在注意力网络(Multi-head Latent Attention, MLA)是其经济推理架构的核心之一,通过对键值缓存进行低秩压缩,显著降低推理成本 [1]。
腾讯AI助手腾讯元宝APP近期修改用户协议内容一事引发关注,成为热搜。焦点是使用AI应用或者产品的用户上传和生成内容的权利归属问题。自2月以来,有网友发现腾讯元宝的用户服务协议中,知识产权和其他权利的部分,包括了用户上传的内容,以及用元宝大模型生成的内容。
当模型复杂度增加到一定程度后,模型开始对训练数据中的噪声和异常值进行拟合,而不是仅仅学习数据中的真实模式。这导致模型在训练数据上表现得非常好,但在新的数据上表现不佳,因为新的数据中噪声和异常值的分布与训练数据不同。
基于闭源评测基准,近期司南针对国内外主流多模态大模型进行了全面评测,现公布司南首期多模态模型闭源评测榜单。首期榜单共包含 48 个多模态模型,其中包含:3 个国内 API 模型:GLM-4v-Plus-20250111 (智谱),Step-1o (阶跃),BailingMM-Pro-0120 (蚂蚁)
推理模型在复杂任务上表现惊艳,缺点是低下的token效率。UCSD清华等机构的研究人员发现,问题根源在于模型的「自我怀疑」!研究团队提出了Dynasor-CoT,一种无需训练、侵入性小且简单的方法。
BGE 系列模型自发布以来广受社区好评。近日,智源研究院联合多所高校开发了多模态向量模型 BGE-VL,进一步扩充了原有生态体系。
Agent这两天随着邀请码进入公众视野,展示了不凡的推理能力。然而,当面对需要精确规划和深度推理的复杂问题时,即使是最先进的LLMs也常常力不从心。Google研究团队提出的PlanGEN框架,正是为解决这一挑战而生。