
多模态大模型对齐新范式,10个评估维度全面提升,快手&中科院&南大打破瓶颈
多模态大模型对齐新范式,10个评估维度全面提升,快手&中科院&南大打破瓶颈尽管多模态大语言模型(MLLMs)取得了显著的进展,但现有的先进模型仍然缺乏与人类偏好的充分对齐。这一差距的存在主要是因为现有的对齐研究多集中于某些特定领域(例如减少幻觉问题),是否与人类偏好对齐可以全面提升MLLM的各种能力仍是一个未知数。
尽管多模态大语言模型(MLLMs)取得了显著的进展,但现有的先进模型仍然缺乏与人类偏好的充分对齐。这一差距的存在主要是因为现有的对齐研究多集中于某些特定领域(例如减少幻觉问题),是否与人类偏好对齐可以全面提升MLLM的各种能力仍是一个未知数。
进入到 2025 年,视频生成(尤其是基于扩散模型)领域还在不断地「推陈出新」,各种文生视频、图生视频模型展现出了酷炫的效果。其中,长视频生成一直是现有视频扩散的痛点。
何恺明再次开宗立派!开辟了生成模型的全新范式——
DeepSeek 的开源周已经进行到了第三天(前两天报道见文末「相关阅读」)。今天开源的项目名叫 DeepGEMM,是一款支持密集型和专家混合(MoE)GEMM 的 FP8 GEMM 库,为 V3/R1 的训练和推理提供了支持,在 Hopper GPU 上可以达到 1350+ FP8 TFLOPS 的计算性能。
昨天的AI新闻有点太密集了,肝快废了。
本文深入解析一项开创性研究——"Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning",该研究通过基于规则的强化学习技术显著提升了语言模型的推理能力。微软亚洲的研究团队受DeepSeek-R1成功经验的启发,利用结构化的逻辑谜题作为训练场,为模型创建了一个可以系统学习和改进推理技能的环境。
AI开源潮涌现,推理模型成主流。
自动形式化数学定理证明,是人工智能在数学推理领域的重要应用方向。此类任务需要将数学命题和证明步骤转化为计算机可验证的代码,这不仅能确保推理过程的绝对严谨性,还能构建可复用的数学知识库,为科学研究提供坚实基础。
当很多 AI 公司还就是否该走开源路线而感到左右为难时,阿里的技术团队又开源了一个新的模型 —— 万相(Wan)视频生成大模型(包括全部推理代码和权重,最宽松的开源协议)。
推理黑马出世,仅以5%参数量撼动AI圈。360、北大团队研发的中等量级推理模型Tiny-R1-32B-Preview正式亮相,32B参数,能够匹敌DeepSeek-R1-671B巨兽。