
微软已为Agent悄然调转船头,当大厂都在卷“通用Agent”
微软已为Agent悄然调转船头,当大厂都在卷“通用Agent”您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
本文主要作者是 Bytedance Pico 北美高级研究员胡涛博士,近年来研究领域包括3D 重建与 4D 场景和视频生成,致力于得到一种最佳的物理世界表示模型。
当前数学领域的数据生成方法常常局限于对单个问题进行改写或变换,好比是让学生反复做同一道题的变种,却忽略了数学题目之间内在的关联性。
刚刚,Gemini 系列模型迎来了一波更新:Gemini 2.5 Pro 稳定版发布且已全面可用,其与 6 月 5 日的预览版相比无变化。新推出了 Gemini 2.5 Flash-Lite 并已开启预览。
今年 5 月,一家名为 FutureHouse 的非营利组织宣布推出一款名为 Robin 的新型人工智能(AI)工具,声称其能够极大加速生物学等领域的科学研究进程,该系统不仅能够自主完成从假设提出、实验设计到数据分析等关键科研环节,更在实际应用中,仅历时约 2.5 个月便成功为干性年龄相关性黄斑变性这一复杂眼疾发现了一种新的潜在治疗药物。
近期,人工智能领域对“具身智能”的讨论持续升温——如何让AI不仅能“理解”语言,还能用“手”去感知世界、操作环境、完成任务?相比语言模型的迅猛发展,真正通向Agent的下一步,需要AI具备跨模态感知、动作控制与现实泛化能力。具身智能让AI不仅能“思考”,更能“感知”“行动”。
近年来,众多原告——包括书籍、报纸、计算机代码和照片的出版商——起诉人工智能公司使用受版权保护的材料来训练模型。所有这些诉讼中的一个关键问题是,人工智能模型如何轻易地从原告的受版权保护的内容中逐字摘录。
虚假的商战, 不断发布新的模型保持技术优势; 真实的商战,Anthropic 单方面禁止AI编程编辑器 Windsurf 使用 Claude 模型,订阅用户都跑去隔壁 Cursor 了。
编程智能体确实厉害!Transformer作者Llion Jones初创公司,专门收集了NP难题并测试了AI智能体,结果竟在上千人竞赛中排第 21!这意味着,它已经比绝大多数人写得好了。
LLM Ensemble(大语言模型集成)在近年来快速地获得了广泛关注。它指的是在下游任务推理阶段,综合考虑并利用多个大语言模型(每个模型都旨在处理用户查询),从而发挥它们各自的优势。大语言模型的广泛可得性,以及其开箱即用的特性和各个模型所具备的不同优势,极大地推动了 LLM Ensemble 领域的发展。