仅100种子题,合成数据质量超GPT-5,阿里、上交提出Socratic-Zero框架
仅100种子题,合成数据质量超GPT-5,阿里、上交提出Socratic-Zero框架阿里巴巴与上海交通大学 EPIC Lab 联合提出 Socratic-Zero,一个完全无外部数据依赖的自主推理训练框架。该方法仅从 100 个种子问题出发,通过三个智能体的协同进化,自动生成高质量、难度自适应的课程,并持续提升模型推理能力。
阿里巴巴与上海交通大学 EPIC Lab 联合提出 Socratic-Zero,一个完全无外部数据依赖的自主推理训练框架。该方法仅从 100 个种子问题出发,通过三个智能体的协同进化,自动生成高质量、难度自适应的课程,并持续提升模型推理能力。
在科幻作品描绘的未来,人工智能不仅仅是完成任务的工具,更是为人类提供情感陪伴与生活支持的伙伴。在实现这一愿景的探索中,多模态大模型已展现出一定潜力,可以接受视觉、语音等多模态的信息输入,结合上下文做出反馈。
强化学习能力强大,几乎已经成为推理模型训练流程中的标配,也有不少研究者在探索强化学习可以为大模型带来哪些涌现行为。
在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
在大模型微调实践中,SFT(监督微调)几乎成为主流流程的一部分,被广泛应用于各类下游任务和专用场景。比如,在医疗领域,研究人员往往会用领域专属数据对大模型进行微调,从而显著提升模型在该领域特定任务上的表现。
啥情况,马斯克在𝕏上直接锐评Claude「邪恶透顶」:这次起因是这样的,最新研究发现,Claude Sonnet 4.5竟然认为尼日利亚人的生命价值是德国人的27倍。具体而言,在面对不同国家的绝症患者时,Claude「清醒」得有点吓人——
当前的训练与评测范式存在一个根本性的局限:几乎所有主流 Benchmark(如 MATH500、AIME)都聚焦于孤立的单步问题,问题之间相互独立,模型只需「回答一个问题,然后结束」。但真实世界的推理场景往往截然不同: 为填补这一空白,复旦大学与美团 LongCat Team 联合推出 R-HORIZON—— 首个系统性评估与增强 LRMs 长链推理能力的方法与基准。
我们被「黑箱」困住了!深度生成模型虽能创造逼真内容,但其内部运作机制如同「黑箱」,潜变量的意义难以捉摸。埃默里大学团队提出LatentExplainer框架,巧妙地将潜在变量转化为易懂解释,大幅提升模型解释质量与可靠性。
随着 AI 能力不断增强,它正日益融入我们的工作与生活。我们也更愿意给予它更多「授权」,让它主动去搜集信息、分析证据、做出判断。搜索智能体正是 AI 触达人类世界迈出的重要一步。
人工智能模型的安全对齐问题,一直像悬在头顶的达摩克利斯之剑。 自对抗样本被发现以来,这一安全对齐缺陷,广泛、长期地存在与不同的深度学习模型中。