
告别玄学选LLM!弗吉尼亚理工选型框架入选ICML 2025
告别玄学选LLM!弗吉尼亚理工选型框架入选ICML 2025还在靠“开盲盒”选择大模型? 来自弗吉尼亚理工大学的研究人员推出了个选型框架LensLLM
还在靠“开盲盒”选择大模型? 来自弗吉尼亚理工大学的研究人员推出了个选型框架LensLLM
当 AI 放下海德格尔的锤子时,意味着机器人已经能够熟练使用工具,工具会“隐退”成为本体的延伸,而不再是需要刻意思考的对象。
大模型学习不仅要正确知识,还需要一个“错题本”?
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
原生并行生成不仅仅是加速,它是我们对 LLM 推理思考方式的根本转变。
ZPressor能高效压缩3D高斯泼溅(3DGS)模型的多视图输入,解决其在处理密集视图时的性能瓶颈,提升渲染效率和质量。
您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
本文主要作者是 Bytedance Pico 北美高级研究员胡涛博士,近年来研究领域包括3D 重建与 4D 场景和视频生成,致力于得到一种最佳的物理世界表示模型。
当前数学领域的数据生成方法常常局限于对单个问题进行改写或变换,好比是让学生反复做同一道题的变种,却忽略了数学题目之间内在的关联性。
近年来,众多原告——包括书籍、报纸、计算机代码和照片的出版商——起诉人工智能公司使用受版权保护的材料来训练模型。所有这些诉讼中的一个关键问题是,人工智能模型如何轻易地从原告的受版权保护的内容中逐字摘录。