
LLM幻觉第一次被定义:你必须掌握的3个理论和能上手的4套工程解法
LLM幻觉第一次被定义:你必须掌握的3个理论和能上手的4套工程解法幻觉,作为AI圈家喻户晓的概念,这个词您可能已经听得耳朵起茧了。我们都知道它存在,也普遍接受了它似乎无法根除,是一个“老大难”问题。但正因如此,一个更危险的问题随之而来:当我们对幻觉的存在习以为常时,我们是否也开始对它背后的系统性风险变得麻木?我们是真的从第一性原理上理解了它,还是仅仅在用一个又一个的补丁(比如RAG)来被动地应对它?
幻觉,作为AI圈家喻户晓的概念,这个词您可能已经听得耳朵起茧了。我们都知道它存在,也普遍接受了它似乎无法根除,是一个“老大难”问题。但正因如此,一个更危险的问题随之而来:当我们对幻觉的存在习以为常时,我们是否也开始对它背后的系统性风险变得麻木?我们是真的从第一性原理上理解了它,还是仅仅在用一个又一个的补丁(比如RAG)来被动地应对它?
GPT-5和“还我GPT-4o”的风波,闹得沸沸扬扬。 今天,奥特曼还有一次认怂了,不仅调了UI,还把o3这些老模型还了回来。
当前 GPT 类大语言模型的表征和处理机制,仅在输入和输出接口层面对语言元素保持可解释的语义映射。相比之下,人类大脑直接在分布式的皮层区域中编码语义,如果将其视为一个语言处理系统,它本身就是一个在全局上可解释的「超大模型」。
Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
前些天,OpenAI 少见地 Open 了一回,发布了两个推理模型 gpt-oss-120b 和 gpt-oss-20b。
相信我们的读者都对 AI 顶会有非常大的关注和热情,有的读者最近可能刚从 NeurIPS rebuttal 脱身,又开始为下一篇做准备了。 作为推动技术革新与思想碰撞的核心引擎,顶级学术会议不仅是整个学界的生命线,更是我们洞察未来的前沿阵地。
强化学习(RL)是锻造当今顶尖大模型(如 OpenAI o 系列、DeepSeek-R1、Gemini 2.5、Grok 4、GPT-5)推理能力与对齐的核心 “武器”,但它也像一把双刃剑,常常导致模型行为脆弱、风格突变,甚至出现 “欺骗性对齐”、“失控” 等危险倾向。
GUI 智能体正以前所未有的速度崛起,有望彻底改变人机交互的方式。然而,这一领域的进展正面临瓶颈:现有数据集大多聚焦于 10 步以内的短程交互,且仅验证最终结果,无法有效评估和训练智能体在真实世界中的长时程规划与执行能力。
首次实现“训练-推理不对称”,字节团队提出全新的语言模型训练方法:Post-Completion Learning (PCL)。 在训练时让模型对自己的输出结果进行反思和评估,推理时却仅输出答案,将反思能力完全内化。
近年来,强化学习(RL)在大型语言模型(LLM)的微调过程中,尤其是在推理能力提升方面,取得了显著的成效。传统的强化学习方法,如近端策略优化(Proximal Policy Optimization,PPO)及其变种,包括组相对策略优化(Group Relative Policy Optimization,GRPO),在处理复杂推理任务时表现出了强大的潜力。