
腾讯AI Lab|让AI左右互搏,无需人类数据也能自学成才!
腾讯AI Lab|让AI左右互搏,无需人类数据也能自学成才!当前训练强大的大语言模型(LLM),就像是培养一个顶尖运动员,需要大量的、由专家(人类标注员)精心设计的训练计划和教材(高质量的标注数据)。
当前训练强大的大语言模型(LLM),就像是培养一个顶尖运动员,需要大量的、由专家(人类标注员)精心设计的训练计划和教材(高质量的标注数据)。
近年来,大语言模型(LLM)已展现出卓越的通用能力,但其核心仍是静态的。面对日新月异的任务、知识领域和交互环境,模型无法实时调整其内部参数,这一根本性瓶颈日益凸显。
在今年三月份,清华 AIR 和字节联合 SIA Lab 发布了 DAPO,即 Decoupled Clip and Dynamic sAmpling Policy Optimization(解耦剪辑和动态采样策略优化)。
面对对抗攻击,具身智能体除了被动防范,也能主动出击! 在人类视觉系统启发下,清华朱军团队在TPMAI 2025中提出了强化学习驱动的主动防御框架REIN-EAD。
长久以来我们都知道在Prompt里塞几个好例子能让LLM表现得更好,这就像教小孩学东西前先给他做个示范。在Vibe coding爆火后,和各种代码生成模型打交道的人变得更多了,大家也一定用过上下文学习(In-Context Learning, ICL)或者检索增强生成(RAG)这类技术来提升它的表现。
上海人工智能实验室等团队提出Lumina-mGPT 2.0 —— 一款独立的、仅使用解码器的自回归模型,统一了包括文生图、图像对生成、主体驱动生成、多轮图像编辑、可控生成和密集预测在内的广泛任务。
近年来,扩散模型在图像与视频合成领域展现出前所未有的生成能力,为人脸生成与编辑技术按下了加速键。特别是一张静态人脸驱动任意表情、姿态乃至光照的梦想,正在走向大众工具箱,并在三大场景展现巨大潜力
随着推理大模型和思维链的出现与普及,大模型具备了「深度思考」的能力,不同任务的泛用性得到了很大的提高。
GPT-oss放飞自我了?!居然出现了明显的幻觉行为。 在没有提示词的情况下,消耗超过30000个token凭空想出一个问题,还反复求解了5000多次?!
4D 空间智能重建是计算机视觉领域的核心挑战,其目标在于从视觉数据中还原三维空间的动态演化过程。这一技术通过整合静态场景结构与时空动态变化,构建出具有时间维度的空间表征系统,在虚拟现实、数字孪生和智能交互等领域展现出关键价值。