
DeepSeek、GPT-5都在尝试的快慢思考切换,有了更智能版本,还是多模态
DeepSeek、GPT-5都在尝试的快慢思考切换,有了更智能版本,还是多模态当前,业界顶尖的大模型正竞相挑战“过度思考”的难题,即无论问题简单与否,它们都采用 “always-on thinking” 的详细推理模式。无论是像 DeepSeek-V3.1 这种依赖混合推理架构提供需用户“手动”介入的快慢思考切换,还是如 GPT-5 那样通过依赖庞大而高成本的“专家路由”机制提供的自适应思考切换。
当前,业界顶尖的大模型正竞相挑战“过度思考”的难题,即无论问题简单与否,它们都采用 “always-on thinking” 的详细推理模式。无论是像 DeepSeek-V3.1 这种依赖混合推理架构提供需用户“手动”介入的快慢思考切换,还是如 GPT-5 那样通过依赖庞大而高成本的“专家路由”机制提供的自适应思考切换。
GPT-4o发布才过去半年,Nano Banana这种「下一代」的生图模型就出来了。 这难道是AI界的摩尔定律?不敢想再过半年后,会是什么样的「魔鬼级」生图模型来屠Nano Banana
这期对话把火力对准了一个不体面的真相:更聪明的“路由”和更苛刻的“成本”正重写 AI 商业化的脚本。
不止贴「AI生成」标签
智东西9月1日消息,苹果又公布了大模型研发新进展! 8月28日,苹果在arXiv发布新论文,介绍新一代多模态基础模型MobileCLIP2及其背后的多模态强化训练机制,同天在GitHub、Hugging Face上开源了模型的预训练权重和数据生成代码。
在图像生成上,Google 其实已经有 Imagen 4 这样的文生图模型,为什么 nano banana 最后还是由 Google 带来的?但这确实不是偶然或者瞎猜的,nano banana 是结合了 Google 多个团队的项目成果。首先就是 Gemini 强大的世界知识与指令遵循能力,其次就是 Google 内部顶尖文生图模型 Imagen,所提供的极致图像美学与自然度追求。
退休经济学教授用一个简单问题干懵GPT-5,其拉胯表现与奥特曼口中“博士级AI”的宣传大相径庭。
清华大学、北京中关村学院、无问芯穹联合北大、伯克利等机构重磅开源RLinf:首个面向具身智能的“渲训推一体化”大规模强化学习框架。
GRPO 就像一个树节点,从这里开始开枝散叶。
当前基于大语言模型(LLM)的智能体构建通过推动自主科学研究推动 AI4S 迅猛发展,催生一系列科研智能体的构建与应用。然而人工智能与自然科学研究之间认知论与方法论的偏差,对科研智能体系统的设计、训练以及验证产生着较大阻碍。