
只需单卡RTX 3090,低比特量化训练就能实现LLaMA-3 8B全参微调
只需单卡RTX 3090,低比特量化训练就能实现LLaMA-3 8B全参微调本文由GreenBit.AI团队撰写,团队的核心成员来自德国哈索·普拉特纳计算机系统工程院开源技术小组。我们致力于推动开源社区的发展,倡导可持续的机器学习理念。我们的目标是通过提供更具成本效益的解决方案,使人工智能技术在环境和社会层面产生积极影响。
来自主题: AI技术研报
8064 点击 2024-05-25 18:15
本文由GreenBit.AI团队撰写,团队的核心成员来自德国哈索·普拉特纳计算机系统工程院开源技术小组。我们致力于推动开源社区的发展,倡导可持续的机器学习理念。我们的目标是通过提供更具成本效益的解决方案,使人工智能技术在环境和社会层面产生积极影响。
Llama 3发布一个月后,一位开发者在GitHub上创建了名为「从头开始实现Llama 3」的项目,引起了开源社区的广泛关注。代码非常详细地展现了Llama所使用的Transformer架构,甚至让Andrej Karpathy亲自下场「背书」。
在上一篇文章「Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存」中,我们介绍了Unsloth,这是一个大模型训练加速和显存高效的训练框架,我们已将其整合到Firefly训练框架中,并且对Llama3-8B的训练进行了测试,Unsloth可大幅提升训练速度和减少显存占用。