AI资讯新闻榜单内容搜索-泛化

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 泛化
3D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32%

3D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32%

3D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32%

中科院自动化所提出BridgeVLA模型,通过将3D输入投影为2D图像并利用2D热图进行动作预测,实现了高效且泛化的3D机器人操作学习。

来自主题: AI技术研报
9461 点击    2025-06-26 15:37
LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍

LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍

LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍

最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。

来自主题: AI技术研报
8375 点击    2025-06-24 14:26
放弃幻想!伯克利重磅:消灭幻觉,就是消灭AI!

放弃幻想!伯克利重磅:消灭幻觉,就是消灭AI!

放弃幻想!伯克利重磅:消灭幻觉,就是消灭AI!

关于大模型产生幻觉这个事,从2023年GPT火了以后,就一直是业界津津乐道的热门话题,但始终缺乏系统性的重磅研究来深入解释其根本机制。今天,伯克利的研究者们带来一个重要研究成果:让基于Transformer架构的语言模型产生幻觉的机制,恰恰也是让它们拥有超强泛化能力的关键。这就像是一枚硬币的两面,您想要哪一面,就得接受另一面的存在。

来自主题: AI技术研报
8302 点击    2025-06-23 09:47
英伟达笑到最后!训练2000步,1.5B逆袭7B巨兽,Scaling真来了

英伟达笑到最后!训练2000步,1.5B逆袭7B巨兽,Scaling真来了

英伟达笑到最后!训练2000步,1.5B逆袭7B巨兽,Scaling真来了

强化学习可以提升LLM推理吗?英伟达ProRL用超2000步训练配方给出了响亮的答案。仅15亿参数模型,媲美Deepseek-R1-7B,数学、代码等全面泛化。

来自主题: AI技术研报
7392 点击    2025-06-22 16:32
Z Tech | 对话 UCB、CMU、Meta AI具身智能研究团队:用AI“手”感世界——从旋转笔尖到具身智能的进化路径

Z Tech | 对话 UCB、CMU、Meta AI具身智能研究团队:用AI“手”感世界——从旋转笔尖到具身智能的进化路径

Z Tech | 对话 UCB、CMU、Meta AI具身智能研究团队:用AI“手”感世界——从旋转笔尖到具身智能的进化路径

近期,人工智能领域对“具身智能”的讨论持续升温——如何让AI不仅能“理解”语言,还能用“手”去感知世界、操作环境、完成任务?相比语言模型的迅猛发展,真正通向Agent的下一步,需要AI具备跨模态感知、动作控制与现实泛化能力。具身智能让AI不仅能“思考”,更能“感知”“行动”。

来自主题: AI资讯
7098 点击    2025-06-17 17:23
搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好

搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好

搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好

当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。

来自主题: AI技术研报
7801 点击    2025-06-17 09:46
四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

四万字·深度求索|泛聊一下强化学习(RL)下的深度推理(DR)对真实世界(RW)建模与泛化的本质

强化学习·RL范式尝试为LLMs应用于广泛的Agentic AI甚至构建AGI打开了一扇“深度推理”的大门,而RL是否是唯一且work的一扇门,先按下不表(不作为今天跟大家唠的重点),至少目前看来,随着o1/o3/r1/qwq..等一众语言推理模型的快速发展,正推动着LLMs和Agentic AI在不同领域的价值与作用,

来自主题: AI技术研报
9575 点击    2025-06-13 10:48
开启 AI 自主进化时代,普林斯顿Alita颠覆传统通用智能体,GAIA榜单引来终章

开启 AI 自主进化时代,普林斯顿Alita颠覆传统通用智能体,GAIA榜单引来终章

开启 AI 自主进化时代,普林斯顿Alita颠覆传统通用智能体,GAIA榜单引来终章

智能体技术日益发展,但现有的许多通用智能体仍然高度依赖于人工预定义好的工具库和工作流,这极大限制了其创造力、可扩展性与泛化能力。

来自主题: AI技术研报
7155 点击    2025-06-05 11:50
SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高

SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高

SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高

「尽管经过 SFT 的模型可能看起来在进行推理,但它们的行为更接近于模式模仿 —— 一种缺乏泛化推理能力的伪推理形式。」

来自主题: AI技术研报
8125 点击    2025-06-02 15:24