Meta「透视」AI思维链:CRV推理诊断,准确率达 92%!
Meta「透视」AI思维链:CRV推理诊断,准确率达 92%!在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
在大模型微调实践中,SFT(监督微调)几乎成为主流流程的一部分,被广泛应用于各类下游任务和专用场景。比如,在医疗领域,研究人员往往会用领域专属数据对大模型进行微调,从而显著提升模型在该领域特定任务上的表现。
两周前,港科大讲座教授、冯诺依曼研究院院长贾佳亚团队开源了他们的最新成果 DreamOmni2,专门针对当前多模态指令编辑与生成两大方向的短板进行了系统性优化与升级。该系统基于 FLUX-Kontext 训练,保留原有的指令编辑与文生图能力,并拓展出多参考图的生成编辑能力,给予了创作者更高的灵活性与可玩性。
啥情况,马斯克在𝕏上直接锐评Claude「邪恶透顶」:这次起因是这样的,最新研究发现,Claude Sonnet 4.5竟然认为尼日利亚人的生命价值是德国人的27倍。具体而言,在面对不同国家的绝症患者时,Claude「清醒」得有点吓人——
亚马逊AI博士奖学金,正式公布了!两年共计6800万美金,计划将为全球「九所」顶尖大学,100多名博士生提供研究资金的支持。这九所顶尖大学,个个都是AI界的「扛把子」,主要包括:
大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。
很疯狂,Meta AI裁员能裁到田渊栋头上,而且是整组整组的裁。田渊栋在Meta工作已超过十年,现任FAIR研究科学家总监(Research Scientist Director),他领导开发了早于AlphaGo的围棋AI“Dark Forest”
近日,范鹤鹤(浙江大学)、杨易(浙江大学)、Mohan Kankanhalli(新加坡国立大学)和吴飞(浙江大学)四位老师提出了一种具有划时代意义的神经网络基础操作——Translution。 该研究认为,神经网络对某种类型数据建模的本质是:
太卷了,DeepSeek-OCR刚发布不到一天,智谱就开源了自家的视觉Token方案——Glyph。既然是同台对垒,那自然得请这两天疯狂点赞DeepSeek的卡帕西来鉴赏一下:
OpenAI前研究副总裁Liam Fedus与DeepMind材料科学领军者Ekin Cubuk共创Periodic Labs,以一轮高达3亿美元的种子融资走出隐身模式,震惊硅谷。然而,曾给出祝福的前东家OpenAI,并未参与本轮投资。