具身大模型LaST₀:双臂/移动/灵巧手全面新SOTA,首次引入隐空间时空思维链
具身大模型LaST₀:双臂/移动/灵巧手全面新SOTA,首次引入隐空间时空思维链LaST₀团队 投稿 量子位 | 公众号 QbitAI 近日,至简动力、北京大学、香港中文大学、北京人形机器人创新中心提出了一种名为LaST₀的全新隐空间推理VLA模型,在基于Transformer混
LaST₀团队 投稿 量子位 | 公众号 QbitAI 近日,至简动力、北京大学、香港中文大学、北京人形机器人创新中心提出了一种名为LaST₀的全新隐空间推理VLA模型,在基于Transformer混
在 LLM 时代,思维链( CoT)已成为解锁模型复杂推理能力的关键钥匙。然而,CoT 的冗长问题一直困扰着研究者——中间推理步骤和解码操作带来了巨大的计算开销和显存占用,严重制约了模型的推理效率。
近年来,视频扩散模型在 “真实感、动态性、可控性” 上进展飞快,但它们大多仍停留在纯 RGB 空间。模型能生成好看的视频,却缺少对三维几何的显式建模。这让许多世界模型(world model)导向的应用(空间推理、具身智能、机器人、自动驾驶仿真等)难以落地,因为这些任务不仅需要像素,还需要完整地模拟 4D 世界。
现有的视觉大模型普遍存在「语义-几何鸿沟」(Semantic-to-Geometric Gap),不仅分不清东南西北,更难以处理精确的空间量化任务。例如问「你坐在沙发上时,餐桌在你的哪一侧?」,VLM 常常答错。
2025 年,随着李飞飞等学者将 “空间智能”(Spatial Intelligence)推向聚光灯下,这一领域迅速成为了大模型竞逐的新高地。通用大模型和各类专家模型纷纷在诸多室内空间推理基准上刷新 SOTA,似乎 AI 在训练中已经更好地读懂了三维空间。
中山大学等机构推出SpatialDreamer,通过主动心理想象和空间推理,显著提升了复杂空间任务的性能。模拟人类主动探索、想象和推理的过程,解决了现有模型在视角变换等任务中的局限,为人工智能的空间智能发展开辟了新路径。
近日,24 岁的 00 后博士生胡文博和所在团队造出一款名为 G²VLM 的超级 AI 模型,它是一位拥有空间超能力的视觉语言小能手,不仅能从普通的平面图片中精准地重建出三维世界,还能像人类一样进行复杂的空间思考和空间推理。
DeepWisdom研究团队提出:视频生成模型不仅能画画,更能推理。 为了验证这一观点,团队推出了VR-Bench——这是首个通过迷宫任务评估视频模型空间推理(spatial reasoning)能力的基准测试
地理AI,还得看谷歌!谷歌首次实现地球尺度的复杂地理空间推理,把地球变成「可计算对象」。基于数十年在世界建模上的经验,结合Gemini的先进推理能力,谷歌重磅升级Earth AI——从环境监测到灾害响应,尽在其中。
大模型在潜空间中推理,带宽能达到普通(显式)思维链(CoT)的2700多倍?