仿真数据也能Scaling!虚实结合训练,端到端性能全面提升|中科院x港大x小米汽车
仿真数据也能Scaling!虚实结合训练,端到端性能全面提升|中科院x港大x小米汽车自动驾驶数据荒怎么破?
自动驾驶数据荒怎么破?
近日,来自引望智能与复旦大学的研究团队联合提出了一个面向自动驾驶的新一代大模型 ——Percept-WAM(Perception-Enhanced World–Awareness–Action Model)。该模型旨在在一个统一的大模型中,将「看见世界(Perception)」「理解世界(World–Awareness)」和「驱动车辆行动(Action)」真正打通,形成一条从感知到决策的完整链路。
本科毕业于北大工学院,早期研究聚焦于自动驾驶;博士后期间在卡内基梅隆大学,利用强化学习解决核聚变反应堆控制问题。陈佳玉的科研生涯,始终围绕着复杂系统的智能控制展开。
当今自动驾驶模型越来越强大,摄像头、雷达、Transformer 网络一齐上阵,似乎什么都「看得见」。但真正的挑战在于:模型能否像人一样「想明白」为什么要这么开?
在自动驾驶领域,VLA 大模型正从学术前沿走向产业落地的 “深水区”。近日,特斯拉(Tesla)在 ICCV 的分享中,就将其面临的核心挑战之一公之于众 ——“监督稀疏”。
智能汽车、自动驾驶、物理AI的竞速引擎,正在悄然收敛—— 至少核心头部玩家,已经在最近的ICCV 2025,展现出了共识。
在北京时间凌晨举办的英伟达 GTC 大会上,黄仁勋用一系列人类历史创新的剪影开场,并把英伟达与 AI 创新直接拔高定调为「下一个阿波罗时刻」。除了展示下一代超级芯片 Vera Rubin,黄仁勋还大谈 6G、量子计算,机器人和自动驾驶,同时宣布要投资新的巨头,舞台大屏上英伟达的「合作」对象名单可以说是密密麻麻。
Meta开源DepthLM,首证视觉语言模型无需改架构即可媲美纯视觉模型的3D理解能力。通过视觉提示、稀疏标注等创新策略,DepthLM精准完成像素级深度估计等任务,解锁VLM多任务处理潜力,为自动驾驶、机器人等领域带来巨大前景。
在机器人与自动驾驶领域,由强化学习训练的控制策略普遍存在控制动作不平滑的问题。这种高频的动作震荡不仅会加剧硬件磨损、导致系统过热,更会在真实世界的复杂扰动下引发系统失稳,是阻碍强化学习走向现实应用的关键挑战。
刚刚,加州大学洛杉矶分校(UCLA)副教授周博磊官宣加入机器人初创公司 Coco Robotics,专注于人行道自动驾驶这一难题!