风格迁移重大突破!西湖大学等提出StyleStudio攻克「过拟合」难题 | CVPR 2025
风格迁移重大突破!西湖大学等提出StyleStudio攻克「过拟合」难题 | CVPR 2025StyleStudio能解决风格迁移中风格过拟合、文本对齐差和图像不稳定的问题,通过跨模态AdaIN技术融合文本和风格特征、用教师模型稳定布局、引入基于风格的无分类器引导,实现精准控制风格元素,提升生成图像的质量和稳定性,无需额外训练,使用门槛更低!
StyleStudio能解决风格迁移中风格过拟合、文本对齐差和图像不稳定的问题,通过跨模态AdaIN技术融合文本和风格特征、用教师模型稳定布局、引入基于风格的无分类器引导,实现精准控制风格元素,提升生成图像的质量和稳定性,无需额外训练,使用门槛更低!
单目深度估计新成果来了!西湖大学AGI实验室等提出了一种创新性的蒸馏算法,成功整合了多个开源单目深度估计模型的优势。在仅使用2万张无标签数据的情况下,该方法显著提升了估计精度,并刷新了单目深度估计的最新SOTA性能。
高效闭环控制是复杂系统控制的核心要求。传统控制方法受限于效率与适用性挑战;而新兴的扩散模型虽然表现出色,却难以满足高效闭环控制的要求。西湖大学研究团队最新提出的 CL-DiffPhyCon 框架,通过异步并行去噪技术,在闭环控制要求下,显著提升了控制效率和效果。论文最近被人工智能领域顶级会议 ICLR 2025 接收。
由港科广、中南、西湖大学、UIUC、新加坡国立大学、上海 AI Lab、宾夕法尼亚大学等团队联合发布的首篇聚焦医疗领域具身智能的综述论文《A Survey of Embodied AI in Healthcare: Techniques, Applications, and Opportunities》正式上线,中南大学刘艺灏为第一作者
MAPLE实验室提出通过强化学习优化图像生成模型的去噪过程,使其能以更少的步骤生成高质量图像,在多个图像生成模型上实现了减少推理步骤,还能提高图像质量。
BioMap 百图生科宣布,全球人工智能领域的顶尖专家、西湖大学人工智能讲席教授——李子青教授出任百图生科首席科学家(AI大模型)。
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
Saprot在proteingym蛋白质突变预测任务公开基准榜(由牛津大学计算机与哈佛医学院设立)排名第一。相比,其他排名靠前的算法都是混合模型,专门针对突变任务设计,而Saprot不仅是单模型,而且是通用模型。
蛋白质结构相比于序列往往被认为更加具有信息量,因为其直接决定了蛋白质的功能
借助强大多模态模型,开创全新的网络智能体 Hongliang He1,3∗, Wenlin Yao2, Kaixin Ma2, Wenhao Yu2, Yong Dai2, Hongming Zhang2, Zhenzhong Lan3, Dong Yu2 1 浙江大学,2 腾讯 AI 实验室,3 西湖大学