
英伟达开源NVLM 1.0屠榜多模态!纯文本性能不降反升
英伟达开源NVLM 1.0屠榜多模态!纯文本性能不降反升NVLM 1.0系列多模态大型语言模型在视觉语言任务上达到了与GPT-4o和其他开源模型相媲美的水平,其在纯文本性能甚至超过了LLM骨干模型,特别是在文本数学和编码基准测试中,平均准确率提高了4.3个百分点。
NVLM 1.0系列多模态大型语言模型在视觉语言任务上达到了与GPT-4o和其他开源模型相媲美的水平,其在纯文本性能甚至超过了LLM骨干模型,特别是在文本数学和编码基准测试中,平均准确率提高了4.3个百分点。
AI玩黑神话,第一个精英怪牯护院轻松拿捏啊。
不久之前,李飞飞教授的空间智能创业公司 World Labs 以及全明星的创业阵容正式亮相。 随后,李飞飞与另一位联合创始人 Justin Johnson 接受了 a16z 的专访。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
视觉 / 激光雷达里程计是计算机视觉和机器人学领域中的一项基本任务,用于估计两幅连续图像或点云之间的相对位姿变换。它被广泛应用于自动驾驶、SLAM、控制导航等领域。最近,多模态里程计越来越受到关注,因为它可以利用不同模态的互补信息,并对非对称传感器退化具有很强的鲁棒性。
近期,浙大和 Salesforce 学者进一步发现:语言模型或许帮助有限,但是图像模型能够有效地迁移到时序预测领域。
本论文第一作者倪赞林是清华大学自动化系 2022 级直博生,师从黄高副教授,主要研究方向为高效深度学习与图像生成。他曾在 ICCV、CVPR、ECCV、ICLR 等国际会议上发表多篇学术论文。
MMMU-Pro通过三步构建过程(筛选问题、增加候选选项、引入纯视觉输入设置)更严格地评估模型的多模态理解能力;模型在新基准上的性能下降明显,表明MMMU-Pro能有效避免模型依赖捷径和猜测策略的情况。
高效多页文档理解,阿里通义实验室mPLUG团队拿下新SOTA。
Mistral的多模态大模型来了!Pixtral 12B正式发布,同时具备语言和视觉处理能力。