可攻可防,越狱成功率近90%!六大主流模型全中招 | EMNLP'25
可攻可防,越狱成功率近90%!六大主流模型全中招 | EMNLP'25聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
Viven 的核心创新在于,它为每个员工创建了一个个性化的大语言模型,实质上就是一个数字分身。这个分身通过访问员工的内部电子文档,包括邮件、Slack 消息、Google Docs、会议记录等,学习这个人如何思考、如何沟通、拥有什么知识。关键是,这个学习过程是自动进行的,不需要员工做任何额外工作。你只需正常工作,你的数字分身就会不断更新和进化。
大型语言模型(LLM)本身很强大,但知识是静态的,有时会“胡说八道”。为了解决这个问题,我们可以让它去外部知识库(比如维基百科、搜索引擎)里“检索”信息,这就是所谓的“检索增强生成”(RAG)。
香港科技大学KnowComp实验室提出基于《欧盟人工智能法案》和《GDPR》的LLM安全新范式,构建合规测试基准并训练出性能优异的推理模型,为大语言模型安全管理提供了新方向。
尽管视觉语言模型(LVLMs)在图像与短视频理解中已取得显著进展,但在处理长时序、复杂语义的视频内容时仍面临巨大挑战 —— 上下文长度限制、跨模态对齐困难、计算成本高昂等问题制约着其实际应用。针对这一难题,厦门大学、罗切斯特大学与南京大学联合提出了一种轻量高效、无需微调的创新框架 ——Video-RAG。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
大语言模型(LLM)不仅在推动通用自然语言处理方面发挥了关键作用,更重要的是,它们已成为支撑多种下游应用如推荐、分类和检索的核心引擎。尽管 LLM 具有广泛的适用性,但在下游任务中高效部署仍面临重大挑战。
复旦大学NLP实验室研发Game-RL,利用游戏丰富视觉元素和明确规则生成多模态可验证推理数据,通过强化训练提升视觉语言模型的推理能力。创新性地提出Code2Logic方法,系统化合成游戏任务数据,构建GameQA数据集,验证了游戏数据在复杂推理训练中的优势。
随着大型语言模型(LLM)朝着通用能力迈进,并以通用人工智能(AGI)为最终目标,测试其生成问题的能力也正变得越来越重要。尤其是在将 LLM 应用于高级编程任务时,因为未来 LLM 编程能力的发展和经济整合将需要大量的验证工作。
Meta开源DepthLM,首证视觉语言模型无需改架构即可媲美纯视觉模型的3D理解能力。通过视觉提示、稀疏标注等创新策略,DepthLM精准完成像素级深度估计等任务,解锁VLM多任务处理潜力,为自动驾驶、机器人等领域带来巨大前景。