
让 AI 更懂你的 Prompt 提示词宝藏网站-FlowGPT
让 AI 更懂你的 Prompt 提示词宝藏网站-FlowGPT之前介绍了很多在本地部署远程大模型以及本地大模型的教程,但是对于 AI 的使用尤其是如何让 AI 准确理解并执行下达的任务也是一个技术活,所以又诞生了 Prompt 提示词工程这个概念。
之前介绍了很多在本地部署远程大模型以及本地大模型的教程,但是对于 AI 的使用尤其是如何让 AI 准确理解并执行下达的任务也是一个技术活,所以又诞生了 Prompt 提示词工程这个概念。
基于公司私有组件生成代码,这个问题的本质是:由于大模型的训练数据集不包含你公司的私有组件数据,因此不能够生成符合公司私有组件库的代码。
2024年,落地,无疑是大模型最重要的主题。
在人工智能领域,模型参数的增多往往意味着性能的提升。但随着模型规模的扩大,其对终端设备的算力与内存需求也日益增加。低比特量化技术,由于可以大幅降低存储和计算成本并提升推理效率,已成为实现大模型在资源受限设备上高效运行的关键技术之一。然而,如果硬件设备不支持低比特量化后的数据模式,那么低比特量化的优势将无法发挥。
无需硬件传感器或对现有网络环境进行重大改动即可轻松部署。
检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
“FLUX在线版”,新增一系列重磅功能!
作为全公司产品做的最好的工程师,同时也是代码写得最好的产品经理,你深刻地知道:搞个靠谱的 AI 应用需要灵感,而好的灵感则需要一个靠谱的 demo 来验证。
T-MAC是一种创新的基于查找表(LUT)的方法,专为在CPU上高效执行低比特大型语言模型(LLMs)推理而设计,无需权重反量化,支持混合精度矩阵乘法(mpGEMM),显著降低了推理开销并提升了计算速度。
事情是这样的,前两天面壁刚刚推出了“小钢炮” MiniCPM-V 2.6 模型,据说视频理解能力直接对标GPT-4V,最重要的是能直接部署在iPad 上。