软件行业的范式转变:AI 如何彻底改写游戏规则
软件行业的范式转变:AI 如何彻底改写游戏规则你有没有想过,我们对软件公司的所有认知可能都要被推翻重建?当一家公司用 19 个人就能在一年内做到 1 亿美元 ARR(年度经常性收入)时,当传统需要 500 人团队才能达成的里程碑现在只需要几十人就
你有没有想过,我们对软件公司的所有认知可能都要被推翻重建?当一家公司用 19 个人就能在一年内做到 1 亿美元 ARR(年度经常性收入)时,当传统需要 500 人团队才能达成的里程碑现在只需要几十人就
CBINSIGHTS 最近做了一份《AI Agent Bible》的报告,系统梳理了 AI Agent 的发展前景与未来趋势,提出了面向 2026 年的六大关键预测,并绘制出完整的生态版图,涵盖最值得关注的创业公司、基础设施提供商及快速崛起的营收增长型企业。同时,报告深入解析了市场格局与技术栈的演进,包括 AI Agent 的市场图谱、技术堆栈与收入竞争态势,并通过企业级应用的视角,
Hi,返工早上好。 我是洛小山,和你聊聊 AI 行业思考。 AI Agent 应用的竞争逻辑,正在发生根本性变化。 当许多团队还在死磕提示词优化(PE 工程)时,一些优秀团队开始重心转向了上下文工程
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
您修过Bug吗?在Vibe coding的时代之前,当程序员遇到自己写的 Bug 时,通常能顺着自己的思路反推问题所在。但当面对 AI 生成的 Bug 时,情况变得复杂得多,我们不清楚 AI 的“思考
写代码的规则,正在被悄悄改写!不再是「人+AI一起盯屏幕」,而是一次性放出十几个任务,让代理们各自跑。真正的门槛,也不再是你能写多少行代码,而是你能不能写清楚需求、明确地拆分任务、快速浏览结果。
来自 UIUC 与 Salesforce 的研究团队提出了一套系统化方案:UserBench —— 首次将 “用户特性” 制度化,构建交互评测环境,用于专门检验大模型是否真正 “懂人”;UserRL —— 在 UserBench 及其他标准化 Gym 环境之上,搭建统一的用户交互强化学习框架,并系统探索以用户为驱动的奖励建模。
斯坦福大学研究人员提出了Paper2Agent,将静态论文转化为可交互的AI智能体,让学术成果可以直接被「调用」,为科研知识传播开辟了新模式,并为构建AI共研生态奠定基础。
清华大学朱军教授团队,NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化
该团队 2025 年的研究《Reasoning by superposition: A theoretical perspective on chain of continuous thought》已从理论上指出,连续思维链的一个关键优势在于它能使模型在叠加(superposition)状态下进行推理:当模型面对多个可能的推理路径而无法确定哪一个是正确时,它可以在连续空间中并行地保留所有可能的路
近日,来自 MetaGPT、蒙特利尔大学和 Mila 研究所、麦吉尔大学、耶鲁大学等机构的研究团队发布 CARE 框架,一个新颖的原生检索增强推理框架,教会 LLM 将推理过程中的上下文事实与模型自身的检索能力有机结合起来。该框架现已全面开源,包括训练数据集、训练代码、模型 checkpoints 和评估代码,为社区提供一套完整的、可复现工作。
早在 2021 年,研究人员就已经发现了深度神经网络常常表现出一种令人困惑的现象,模型在早期训练阶段对训练数据的记忆能力较弱,但随着持续训练,在某一个时间点,会突然从记忆转向强泛化。
基于多模态大模型语义理解能力的统一多模态嵌入模型UniME-V2。该方法首先通过全局检索构建潜在困难负例集,随后创新性地引入“MLLM-as-a-Judge”机制:利用MLLM对查询-候选对进行语义对齐评估,生成软语义匹配分数。
AI正在把科技与资本结合的力量,推向一个新的市场高度。先看这张图,基本上能说明过去40年美国经济与产业的演变。 1985年初的美国十大公司,到2015年仅剩下两家,到2025年全部消失。1985年,主
不是拼凑知识点,AI这次是真搞研究。一个叫Virtuous Machines的AI系统,花了17小时、114美元,找了288个真人做实验,写了一篇30页的学术论文。而且还是从选题到成稿全自动化速通!?
2025年9月17日,中国科学院香港创新研究院人工智能与机器人创新中心(CAIR)在香港正式开源发布其最新科研成果——EchoCare“聆音”超声基座大模型(简称“聆音”)。该模型基于超过450万张、涵盖50多个人体器官的大规模超声影像数据集训练而成,在器官识别、器官分割、病灶分类等10余项典型超声医学任务测试中表现卓越,性能全面登顶。
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同
连续飞踢一台机器人30秒会发生什么?那么,是什么让这台机器人怎么踹都踹不倒呢? 答案就出自银河通用的全新通用动作追踪框架——Any2Track。
QuestA(问题增强)引入了一种方法,用于提升强化学习中的推理能力。通过在训练过程中注入部分解题提示,QuestA 实现两项重大成果
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
模型上下文协议 (MCP) 是连接 LLM/Agent 与外部工具的通信标准。它允许 LLM 动态发现并调用 API工具,将他们串成一个完整的工作流,从而实现自主规划、推理与执行。 上个月我们悄悄发布
近年来,以强化学习为核心的训练方法显著提升了大语言模型(Large Language Models, LLMs)的推理能力与对齐性能,尤其在理解人类意图、遵循用户指令以及增强推理能力方面效果突出。尽管现有综述对强化学习增强型 LLMs 进行了概述,但其涵盖范围较为有限,未能全面总结强化学习在 LLMs 全生命周期中的作用机制。
Agent(智能体)是最近一段时间的人工智能热点之一,将大语言模型的能力与工具调用、环境交互和自主规划结合起来,使其能够像虚拟助理一样完成复杂任务。 其中「计算机使用智能
大模型最让人头疼的毛病,就是一本正经地「瞎编」。过去,只能靠检索补丁或额外训练来修。可在NeurIPS 2024 上,谷歌抛出的新方法SLED却告诉我们:模型其实知道,只是最后一步忘了。如果把每一层的「声音」都纳入考量,它就能从幻觉中被拉回到事实。
“TreeSynth” 就这样起源于作者们最初的构想:“如何通过一句任务描述生成海量数据,完成模型训练?” 同时,大规模 scalibility 对合成数据的多样性提出了新的要求。
多模态大模型需要干的活,已经从最初的文生图,扩展到了像素级任务(图像分割)。
来自牛津大学、新加坡国立大学、伊利诺伊大学厄巴纳-香槟分校,伦敦大学学院、帝国理工学院、上海人工智能实验室等等全球 16 家顶尖研究机构的学者,共同撰写并发布了长达百页的综述:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》。
只让机器人或虚拟智能体「想象」,不让它们和物理世界交互,它们也能学到和世界交互的技能?谷歌的世界模型 Dreamer 4 为这一想法提供了新的支撑。为了在具身环境中解决复杂任务,智能体需要深入理解世界并选择成功的行动。世界模型通过学习从智能体(如机器人或电子游戏玩家)的视角预测潜在行动的未来结果,为实现这一目标提供了一种有前景的方法。
小红书智创音频团队推出业内首个支持私有化部署的全双工大模型语音交互系统 FireRedChat,自研流式 pVAD 与 EoT 让语音交互更加自然,首发级联与半级联两套实现,端到端时延逼近工业级应用。
家人们,就在国庆放假前的今天凌晨,那个总在节前“搞事”的 DeepSeek,又双叒叕深夜悄然上线了!讲真,DeepSeek 是真的不考虑我们媒体人的死活啊哈哈!每次都卡着放假前更新,之前大家都转发的吐槽截图,本人又翻出来了: