SIGCOMM 2025|重新定义个性化视频体验,快手与清华联合提出灵犀系统
SIGCOMM 2025|重新定义个性化视频体验,快手与清华联合提出灵犀系统近日,快手与清华大学孙立峰团队联合发表论文《Towards User-level QoE: Large-scale Practice in Personalized Optimization of Adaptive Video Streaming》,被计算机网络领域的国际顶尖学术会议 ACM SIGCOMM 2025 录用。
近日,快手与清华大学孙立峰团队联合发表论文《Towards User-level QoE: Large-scale Practice in Personalized Optimization of Adaptive Video Streaming》,被计算机网络领域的国际顶尖学术会议 ACM SIGCOMM 2025 录用。
您对“思维链”(Chain-of-Thought)肯定不陌生,从最早的GPT-o1到后来震惊世界的Deepseek-R1,它通过让模型输出详细的思考步骤,确实解决了许多复杂的推理问题。但您肯定也为它那冗长的输出、高昂的API费用和感人的延迟头疼过,这些在产品落地时都是实实在在的阻碍。
LLM.265研究发现,视频编码器本身就是一种高效的大模型张量编码器。原本用于播放8K视频的现成视频编解码硬件,其实压缩AI模型数据的效率也非常高,甚至超过了许多专门为AI开发的方案。该工作已被世界微架构大会MICRO-2025正式接收,相关成果将于今年10月在首尔进行展示与讨论。
许多研究者在参加学术会议前,常常会因为制作海报所耗费的大量时间和精力而感到困扰。一张精心设计的海报是高效的学术交流媒介,但现有自动化方法普遍忽略了核心设计原则,导致生成的海报仍旧需要大量人工调整。
9 月 3 日,OpenAI 发布了一份关键的《在 AI 时代保持领先:领导力指南》。该报告总结了该公司与一系列全球大型知名企业合作的经验,这些企业包括制药巨头 Moderna、化妆品巨头雅诗兰黛、Notion 以及跨国银行 / 金融服务公司 BBVA,最终得到了从战略到治理的五大核心原则。
随着内容创作智能化需求的爆发,长时长、高质量数字人视频生成始终是行业痛点。近日,字节跳动商业化 GenAI 团队联合浙江大学推出商用级长时序音频驱动人物视频生成模型 ——InfinityHuman,打破传统音频驱动技术在长视频场景中的局限性,开启 AI 数字人实用化新征程
在大多数人眼中,《我的世界》(Minecraft)只是一款自由度极高的沙盒游戏。 而在香港科技大学(广州)与腾讯联合团队的眼中,它却是一座可以演练通用人工智能的“数字练兵场”。
当你刚用 AI 生成了一个精美的电商网站,却在演示时购物车结账功能存在隐藏 Bug?
你有没有想过,软件商业模式可能正在经历五十年来最大的变革?当我看到 Cursor、Claude Code、Lovable 这些 AI 编程工具的出现,以及它们正在以惊人的速度降低软件开发成本时,我意识到我们正站在一个历史转折点上。这不仅仅是开发效率的提升,而是整个软件行业商业逻辑的根本性重构。
Nano banana正火爆全球,谷歌立马推出官方提示词指南。
加州大学最新推出Orca浏览器,把拥挤标签页变成可随意拖拽、并排比较的无限画布,让AI替你同时点按钮、填表单。你只需像指挥家一样扫一眼全局、下指令,就能让上百个网页和智能体自动完成搜索、整理、汇总,全程可控。
今年是人工智能正式被提出七十周年,新智元十周年峰会也将于9月7日在北京中关村软件园举行,主题是「新天终启,万象智生」。此次峰会将发布《2025新智元ASI前沿趋势报告》,大会集结百度CTO、NVIDIA副总裁等十位领航者,以「十人十题」解构AI五阶段路线图,纵贯大模型、Physical AI、具身智能到医疗AI、视频AI、脑科学、AI Agent与人才培养,定义下个十年智能图景。
AI教父Hinton荣膺诺贝尔奖,可谓是实至名归。如今,他发表的「玻尔兹曼机」震撼演讲,已登上APS期刊。这一曾催化深度学习革命的「历史酶」,究竟讲了什么?
在长周期、多步骤的协作任务中,传统单智能体往往面临着任务成功率随步骤长度快速衰减,错误级联导致容错率极低等问题。
训练大模型时,有时让它“记性差一点”,反而更聪明!
腾讯混元,刚刚又拿下一个国际冠军—— Hunyuan-MT-7B,以7B总参数量获得国际翻译比赛冠军。该模型支持33个语种、5种民汉语言/方言互译,是一个能力全面的轻量级翻译模型。
nano banana爆火!网上看到的那些超强效果图是如何生成的呢?谷歌的官方Prompt模板终于来了!赶紧先收藏再说!
这几天,一篇关于向量嵌入(Vector Embeddings)局限性的论文在 AlphaXiv 上爆火,热度飙升到了近 9000。
在这场以大型语言模型(LLM)为核心的 AI 浪潮中,苹果似乎一直保持着低调,很少出现在技术报道的前沿。尽管如此,时不时地,该公司也能拿出一些非常亮眼的研究成果,比如能在 iPhone 上直接运行的高效视觉语言模型 FastVLM。
AI 产品经理,和我们所熟知的 PC、App 时代的产品经理完全不一样。
大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。
最近,工业界“RAG已死”甚嚣尘上。过去几年,AI领域的主旋律是“规模定律”(Scaling Law),即更大的模型、更多的数据会带来更好的性能。即便偶然有瑕疵,也认为只是工程上的不足,并非数学上的不可能。
国内外开发者:亲测,美团新开源的模型速度超快!
随着DeepSeek R1、Kimi K2和DeepSeek V3.1混合专家(MoE)模型的相继发布,它们已成为智能前沿领域大语言模型(LLM)的领先架构。由于其庞大的规模(1万亿参数及以上)和稀疏计算模式(每个token仅激活部分参数而非整个模型),MoE式LLM对推理工作负载提出了重大挑战,显著改变了底层的推理经济学。
机器人对可形变物体的操作(Deformable Object Manipulation, DOM),是衡量通用机器人智能水平的关键指标之一。与刚体操作不同,衣物、绳索、食物等物体的形态不固定,其状态空间维度极高,且物理交互过程呈现出复杂的非线性动力学特性,为感知、规划和控制带来了巨大挑战。
AI图像编辑技术发展迅猛,扩散模型凭借强大的生成能力,成为行业主流。 但这类模型在实际应用中始终面临两大难题:一是“牵一发而动全身”,即便只想修改一个细节,系统也可能影响到整个画面;二是生成速度缓慢,难以满足实时交互的需求。
覆盖桌面、移动和 Web,7B 模型超越同类开源选手,32B 模型挑战 GPT-4o 与 Claude 3.7,通义实验室全新 Mobile-Agent-v3 现已开源。
原来,Scaling Law在32年前就被提出了! 不是2020年的OpenAI、不是2017年的百度,而是1993年的贝尔实验室。
大家好,我是歸藏(guizang),今天教大家解决 Nana Banana 出图最大的问题。 Nano Banana 已经非常强了,但是最近大家普遍用的时候两个问题非常影响可用性
一群AI玩狼人杀,GPT-5断崖式领先,胜率达到了惊人的96.7%。 OpenAI的总裁格雷格·布罗克曼转发了这样的一个基准测试:让7个强大的LLMs,包括开源和闭源,玩了210场完整的狼人杀。