
国产SOTA新模型精准get“画(3+6)条命的动物” | 开源
国产SOTA新模型精准get“画(3+6)条命的动物” | 开源生成图像这件事,会推理的AI才是好AI。 举个例子,以往要是给AI一句这样的Prompt: (3+6)条命的动物。 我们人类肯定一眼就知道是猫咪,但AI的思考过程却是这样的:
生成图像这件事,会推理的AI才是好AI。 举个例子,以往要是给AI一句这样的Prompt: (3+6)条命的动物。 我们人类肯定一眼就知道是猫咪,但AI的思考过程却是这样的:
6 月 16 日,腾讯 AI Lab 推出并开源 SongGeneration 音乐生成大模型,专注解决音乐 AIGC 中音质、音乐性与生成速度这三大共性难题
预训练模型能否作为探索新架构设计的“底座” ? 最新答案是:yes!
长期以来主流的代码修复评测基准SWE-bench面临数据过时、覆盖面窄、手动维护成本高等问题,严重制约了AI模型真实能力的展现。
人人都绕不开的推荐系统,如今正被注入新的 AI 动能。 随着 AI 领域掀起一场由大型语言模型(LLM)引领的生成式革命,它们凭借着强大的端到端学习能力、海量数据理解能力以及前所未有的内容生成潜力,开始重塑各领域的传统技术栈。
近年来,强化学习 (RL) 在提升大型语言模型 (LLM) 的链式思考 (CoT) 推理能力方面展现出巨大潜力,其中直接偏好优化 (DPO) 和组相对策略优化 (GRPO) 是两大主流算法。
生成模型会重现识别模型的历史吗?
大语言模型解决不等式证明问题时,可以给出正确答案,但大多数时候是靠猜。推理过程经不起推敲,逻辑完全崩溃。
剑桥大学和范德夏尔实验室在 ICML 2024 上发表的立场论文,直接挑战了当前Agent开发的核心假设:我们一直在用错误的方式让Agent"自我改进"。
只需要动动嘴就可以驱动GUI代理?
AI也有量子叠加态了?
AI上瘾堪比「吸毒」!MIT最新研究惊人发现:长期依赖大模型,学习能力下降、大脑受损,神经连接减少47%。AI提高效率的说法,或许根本就是误解!
普林斯顿大学和Meta联合推出的新框架LinGen,以MATE线性复杂度块取代传统自注意力,将视频生成从像素数的平方复杂度压到线性复杂度,使单张GPU就能在分钟级长度下生成高质量视频,大幅提高了模型的可扩展性和生成效率。
2025年1月到5月间,斯坦福大学的研究团队完成了一项本应在AI热潮开始时就进行的调查。他们采访了1500名美国员工和52名AI专家,评估了104个职业中的844项具体任务。
为此,香港中文大学、字节跳动Seed和斯坦福大学研究团队出手,提出了一种面向同声传译的序贯策略优化框架 (Sequential Policy Optimization for Simultaneous Machine Translation, SeqPO-SiMT)。
医学世界模型(MeWM)是一种创新的AI系统,能够模拟疾病演变并预测不同治疗方案下的肿瘤变化。通过生成术后肿瘤图像,可以帮助医生在术前评估治疗效果,优化治疗方案,显著提升临床决策的准确性,为精准医疗提供了有力支持。
OpenAI发布最新论文,找了到控制AI“善恶”的开关。
GRIT能让多模态大语言模型(MLLM)通过生成自然语言和图像框坐标结合的推理链进行「图像思维」,仅需20个训练样本即可实现优越性能!
AI想替代谁?谁愿意被替代?北大校友的研究首次揭示数据真相!
随着大型模型需要处理的序列长度不断增加,注意力运算(Attention)的时间开销逐渐成为主要开销。
你敢想象吗?你的工作“含人量”多少,决定你值多少钱?“含人量”是我首次创造的一个中文通俗词汇,用来转译论文核心概念“Human Agency Scale”,以后谁要引用,请注明出处是这里哈~
扩散模型在视频合成任务中取得了显著成果,但其依赖迭代去噪过程,带来了巨大的计算开销。尽管一致性模型(Consistency Models)在加速扩散模型方面取得了重要进展,直接将其应用于视频扩散模型却常常导致时序一致性和外观细节的明显退化。
GSPN是一种新型视觉注意力机制,通过线性扫描和稳定性-上下文条件,高效处理图像空间结构,显著降低计算复杂度。通过线性扫描方法建立像素间的密集连接,并利用稳定性-上下文条件确保稳定的长距离上下文传播,将计算复杂度显著降低至√N量级。
今年 4 月,围绕“华为芯片效率是否超越国际主流 AI 芯片和架构”的问题,网上曾引发一场激烈争论。
还在靠“开盲盒”选择大模型? 来自弗吉尼亚理工大学的研究人员推出了个选型框架LensLLM
当 AI 放下海德格尔的锤子时,意味着机器人已经能够熟练使用工具,工具会“隐退”成为本体的延伸,而不再是需要刻意思考的对象。
大模型学习不仅要正确知识,还需要一个“错题本”?
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
AI生成内容著作权保护困境及解决路径。 本文旨在探讨人工智能生成内容的著作权保护问题,以平衡各方利益,推动著作权制度目标的实现,助力文化创意产业与智能科技的深度融合。
原生并行生成不仅仅是加速,它是我们对 LLM 推理思考方式的根本转变。