让大模型学会「心灵感应」:基于思维沟通的多智能体合作范式来了
让大模型学会「心灵感应」:基于思维沟通的多智能体合作范式来了如果多个大模型能读懂彼此的想法,会发生什么?
如果多个大模型能读懂彼此的想法,会发生什么?
单Transformer搞定任意视图3D重建!
当我们谈论大型语言模型(LLM)的"强化学习"(RL)时,我们在谈论什么?从去年至今,RL可以说是当前AI领域最炙手可热的词汇。
为了同时解决知识的实时性和推理的复杂性这两大挑战,搜索智能体(Search Agent)应运而生。它与 RAG 的核心区别在于,Search Agent 能够通过与实时搜索引擎进行多轮交互来分解并执行复杂任务。这种能力在人物画像构建,偏好搜索等任务中至关重要,因为它能模拟人类专家进行深度、实时的资料挖掘。
基层医生的AI好助手来了!国产AI,更懂中国医生。
大家好,我是Jomy,是智跃Zleap的CEO,也是Zleap产品和技术的主要设计者。此前在报道中,我曾粗略介绍过Zleap产品背后的技术:一个能帮助CEO自动整理、总结海量企业内部信息的智能Agent。今天,我要正式为大家介绍驱动这个Agent的底层技术:SAG。
我们的大脑蕴藏着待解的进化密码,而AI的未来或许正系于此。
CUDA 代码的性能对于当今的模型训练与推理至关重要,然而手动编写优化 CUDA Kernel 需要很高的知识门槛和时间成本。与此同时,近年来 LLM 在 Code 领域获得了诸多成功。
中科大 LDS 实验室何向南、王翔团队与 Alpha Lab 张岸团队联合开源 MiniOneRec,推出生成式推荐首个完整的端到端开源框架,不仅在开源场景验证了生成式推荐 Scaling Law,还可轻量复现「OneRec」,为社区提供一站式的生成式推荐训练与研究平台。
离开Meta的大佬们,留下作品还在陆续发表,今天轮到田渊栋。
港大、港科大与西电团队登上Nature子刊,破解AI芯片核心难题。他们攻克存算一体架构中模数转换器(ADC)这个占能耗87%的「黑洞」,利用忆阻器可编程特性打造能自适应数据分布的「智能标尺」,使AI芯片功耗锐减57.2%,面积缩小30.7%,为下一代高效AI硬件系统开辟新路。
嗨大家好!我是阿真! 继续为大家带来一些有趣的好玩的工具分享。
在自动驾驶领域,VLA 大模型正从学术前沿走向产业落地的 “深水区”。近日,特斯拉(Tesla)在 ICCV 的分享中,就将其面临的核心挑战之一公之于众 ——“监督稀疏”。
随着生成式 AI 的快速发展,从文本生成图像、视频,到构建完整的三维世界,AI “创造空间” 的能力正以前所未有的速度突破边界。然而,现有 3D 场景生成方法仍存在明显局限:模型往往直接输出每个物体的几何参数(位置、大小、方向等),结果容易出现漂浮、重叠、穿模等问题;场景结构缺乏逻辑一致性,难以编辑或复用,更无法像程序那样精确控制空间关系与生成逻辑。
做过独立开发的朋友都清楚,虽然现在 AI 已经能写出相当不错的前端,后端也有成熟的 BaaS 服务,但应用开发并不仅仅只是写份代码。
上海人工智能实验室推出了一款革新的多模态生成理解一体化的扩散语言模型 ——Lumina-DiMOO。基于离散扩散建模(Discrete Diffusion Modeling),Lumina-DiMOO 打破了多模态任务之间的壁垒,在同一离散扩散框架下,完成从 文本→图像、图像→图像、图像→文本的全栈能力闭环。
长期以来,多模态代码生成(Multimodal Code Generation)的训练严重依赖于特定任务的监督微调(SFT)。尽管这种范式在 Chart-to-code 等单一任务上取得了显著成功 ,但其 “狭隘的训练范围” 从根本上限制了模型的泛化能力,阻碍了通用视觉代码智能(Generalized VIsioN Code Intelligence)的发展 。
你知道有个全球年度词汇叫“脑损伤”(Brain Rot)吗?
憨豆先生坐在《猫和老鼠》的客厅里,汤姆在一旁跌进油漆桶,杰瑞躲在沙发后偷笑。这一幕,不是梦,也不是恶搞,而是AI真实生成的画面。在最新一篇论文中,研究者让从未共存的角色相遇,并解决了「风格错乱」的世纪难题。也许,我们正在迎接一个虚构与真实彻底混合的时代。
和任何人,去任何地方!复旦大学携手阶跃星辰打破 “复制粘贴” 魔咒,重磅推出全新 AI 合照生成模型 WithAnyone —— 只需上传照片,就能一键生成自然、真实、毫无违和感的 AI 合照!
如何构建一个真正意义上的“自主代理”(Agent),而不是一个“带LLM的高级工作流”? 让钢铁侠中的“贾维斯”(J.A.R.V.I.S.)真正来到现实,不仅能对话,还能调动资源、控制机械、在复杂战局中自主执行多步任务。
在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
首个系统性评估多模态大模型(VLM)交互式物理推理能力的综合基准来了。
在大模型研究领域,做混合专家模型(MoE)的团队很多,但专注机制可解释性(Mechanistic Interpretability)的却寥寥无几 —— 而将二者深度结合,从底层机制理解复杂推理过程的工作,更是凤毛麟角。
近年来,Stable Diffusion、CogVideoX 等视频生成模型在自然场景中表现惊艳,但面对科学现象 —— 如流体模拟或气象过程 —— 却常常 “乱画”:如下视频所示,生成的流体很容易产生违背物理直觉的现象,比如气旋逆向旋转或整体平移等等。
机器之心报道 编辑:泽南、杨文 现在,只需要一个简单的、用深度光线表示训练的 Transformer 就行了。 这项研究证明了,如今大多数 3D 视觉研究都存在过度设计的问题。 本周五,AI 社区最热
人类数千年的科学探索,如今被AI「顿悟」瞬间复刻。北京大学研究团队推出的名为AI-Newton的AI系统,重新发现了牛顿第二定律、能量守恒定律和万有引力定律等基础规律,这一成果被视作AI驱动自主科学发现的一项重要进展。
市场不是机器,而是人群;不是公式,而是故事。TwinMarket让AI学会讲述这些故事。 1994年,美国圣塔菲研究所(Santa Fe Institute)推出了一个野心勃勃的项目:人工股票市场(A
来⾃阿⾥巴巴夸克、北京⼤学、中⼭⼤学的研究者提出了⼀种新的解决⽅案:搜索自博弈 Search Self-play(SSP)⸺⼀种⾯向深度搜索 Agent 的⾃我博弈训练范式。其核⼼思路是:让⼀个模型同时扮演两个⻆⾊⸺「出题者」和「解题者」,它们在对抗训练中共同进化,使训练难度随着模型能⼒动态提升,最终形成⼀个⽆需⼈⼯标注的动态博弈⾃我进化过程。
就在今天,OpenAI 发布了一项新研究,使用新方法来训练内部机制更易于解释的小型稀疏模型,其神经元之间的连接更少、更简单,从而观察它们的计算过程是否更容易被人理解。