
微软首个多模态Phi-4问世,56亿参数秒杀GPT-4o!LoRA华人大佬带队
微软首个多模态Phi-4问世,56亿参数秒杀GPT-4o!LoRA华人大佬带队Phi-4系列模型上新了!56亿参数Phi-4-multimodal集语音、视觉、文本多模态于一体,读图推理性能碾压GPT-4o;另一款38亿参数Phi-4-mini在推理、数学、编程等任务中超越了参数更大的LLM,支持128K token上下文。
Phi-4系列模型上新了!56亿参数Phi-4-multimodal集语音、视觉、文本多模态于一体,读图推理性能碾压GPT-4o;另一款38亿参数Phi-4-mini在推理、数学、编程等任务中超越了参数更大的LLM,支持128K token上下文。
在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
DeepSeek开源周的最后一天,迎来的是支撑其V3/R1模型全生命周期数据访问需求的核心基础设施 — Fire-Flyer File System(3FS) 和构建于其上的Smallpond数据处理框架。
单个模型的优缺点也能分析
本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
这是智能体平台扣子官方整理的AI应用的相关数据,该报告可以让大家更好的了解用户在智能体方面的创建情况,同时也可以了解智能体平台本身的用户情况,更清楚的分析智能体商业的前景。
动辄百亿、千亿参数的大模型正在一路狂奔,但「小而美」的模型也在闪闪发光。
最近,英伟达开源了首个在Blackwell架构上优化的DeepSeek-R1,实现了推理速度提升25倍,和每token成本降低20倍的惊人成果。同时,DeepSeek连续开源多个英伟达GPU优化项目,共同探索模型性能极限。
斯坦福和普林斯顿研究者发现,DeepSeek-R1生成的自定义CUDA内核,完爆了o1和Claude 3.5 Sonnet,拿下总排名第一。虽然目前只能在不到20%任务上超越PyTorch Eager基线,但GPU编程加速自动化的按钮,已经被按下!
哈尔滨工业大学团队提出HEROS-GAN技术,通过生成式深度学习将低成本加速度计信号转化为高精度信号,突破其精度与量程瓶颈。该技术利用最优传输监督和拉普拉斯能量调制,使0.5美元的传感器达到200美元高端设备的性能,为工业、医疗等领域应用带来变革。
AI引用正确率仅有4.2- 18.5%,用Deep Research就提高了引用正确率吗?似乎用Think&Cite框架的SG-MCTS和过程奖励机制PRM可以解决引用问题,生成可信内容。
当前的 AI 领域,可以说 Transformer 与扩散模型是最热门的模型架构。也因此,有不少研究团队都在尝试将这两种架构融合到一起,以两者之长探索新一代的模型范式,比如我们之前报道过的 LLaDA。不过,之前这些成果都还只是研究探索,并未真正实现大规模应用。
第四天,DeepSee发布包括三个主要项目: DualPipe- 一种用于 V3/R1 训练的双向流水线并行算法,实现计算和通信完全重叠; EPLB(Expert Parallelism Load Balancer) - 专为 V3/R1 设计的专家并行负载均衡器; Profile-data- 分析 V3/R1 中计算与通信重叠的性能数据集。
按时整活!DeepSeek开源周第四天,直接痛快「1日3连发」,且全都围绕一个主题:优化并行策略。
Web Agent是这样一种特殊的智能体:它借助AI自动控制你的浏览器,并完成你“交代”的任务。比如帮你挑选一部最新的iPhone或者到旅行网站预订机票。这样的智能数字助手,无论是对生活还是工作,未来无疑都具有重大的意义。当前有大量的研究正针对这种Agent展开,本文就来聊聊其最新进展及DeepSeek的应用。
近日,上海 AI Lab 具身智能中心研究团队在机器人控制领域取得了最新突破,提出的 HoST(Humanoid Standing-up Control)算法,成功让人形机器人在多种复杂环境中实现了自主站起,并展现出强大的抗干扰能力。
在实际应用中,我们常常需要模型输出具有严格结构的数据,比如生物制药生产记录、金融交易报告或医疗健康档案等。这种结构化输出的需求在生物制造、金融服务、医疗健康等严格监管的领域尤为重要。
现在截图生成代码,已经来到了一个新高度——
大自然的分形之美,蕴藏着宇宙的设计规则。刚刚,何恺明团队祭出「分形生成模型」,首次实现高分辨率逐像素建模,让计算效率飙升4000倍,开辟AI图像生成新范式。
相信很多用户已经见识过或至少听说过 Deep Research 的强大能力。
Zep,一个为大模型智能体提供长期记忆的插件,能将智能体的记忆组织成情节,从这些情节中提取实体及其关系,并将它们存储在知识图谱中,从而让用户以低代码的方式为智能力构建长期记忆。
AI co-scientist系统基于Gemini 2.0开发,能够协助科研人员生成新的研究假设、制定实验方案,并通过自我改进提升结果质量。在生物医学应用中,AI co-scientist成功预测了药物再利用方向、提出新的治疗靶点,并解释了抗菌耐药机制。
尽管多模态大语言模型(MLLMs)取得了显著的进展,但现有的先进模型仍然缺乏与人类偏好的充分对齐。这一差距的存在主要是因为现有的对齐研究多集中于某些特定领域(例如减少幻觉问题),是否与人类偏好对齐可以全面提升MLLM的各种能力仍是一个未知数。
进入到 2025 年,视频生成(尤其是基于扩散模型)领域还在不断地「推陈出新」,各种文生视频、图生视频模型展现出了酷炫的效果。其中,长视频生成一直是现有视频扩散的痛点。
何恺明再次开宗立派!开辟了生成模型的全新范式——
DeepSeek 开源周的第三天,带来了专为 Hopper 架构 GPU 优化的矩阵乘法库 — DeepGEMM。这一库支持标准矩阵计算和混合专家模型(MoE)计算,为 DeepSeek-V3/R1 的训练和推理提供强大支持,在 Hopper GPU 上达到 1350+FP8 TFLOPS 的高性能。
当前,企业普遍认同智能化是构建其核心竞争力的重要支柱。AI技术未来将深刻融入企业业务的方方面面,为营销、研发、生产、服务等环节都带来革命性的效率提升和用户体验优化,以及商业模式上的创新。那些能够将智能化融入企业基因,拥抱智能化的企业,将在未来的竞争中抢得先机,引领行业发展。
2024年12月4日,两位共同组织了“2024BRAIN NeuroAI Workshop”研讨会,探讨了NeuroAI如何整合到BRAIN计划中并帮助理解和治愈人类脑疾病。请问是什么契机促使两位聚集一起开展NeuroAI这项研究的?
本文深入解析一项开创性研究——"Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning",该研究通过基于规则的强化学习技术显著提升了语言模型的推理能力。微软亚洲的研究团队受DeepSeek-R1成功经验的启发,利用结构化的逻辑谜题作为训练场,为模型创建了一个可以系统学习和改进推理技能的环境。
自动形式化数学定理证明,是人工智能在数学推理领域的重要应用方向。此类任务需要将数学命题和证明步骤转化为计算机可验证的代码,这不仅能确保推理过程的绝对严谨性,还能构建可复用的数学知识库,为科学研究提供坚实基础。