
超CLIP准确率11%!伯克利港大阐明「LLM文本-视觉」对齐深层机制
超CLIP准确率11%!伯克利港大阐明「LLM文本-视觉」对齐深层机制多模态对齐模型借助对比学习在检索与生成任务中大放异彩。最新趋势是用冻结的大语言模型替换自训文本编码器,从而在长文本与大数据场景中降低算力成本。LIFT首次系统性地剖析了此范式的优势来源、数据适配性、以及关键设计选择,在组合语义理解与长文本任务上观察到大幅提升。
多模态对齐模型借助对比学习在检索与生成任务中大放异彩。最新趋势是用冻结的大语言模型替换自训文本编码器,从而在长文本与大数据场景中降低算力成本。LIFT首次系统性地剖析了此范式的优势来源、数据适配性、以及关键设计选择,在组合语义理解与长文本任务上观察到大幅提升。
自从 Transformer 问世,NLP 领域发生了颠覆性变化。大语言模型极大提升了文本理解与生成能力,成为现代 AI 系统的基础。而今,AI 正不断向前,具备自主决策和复杂交互能力的新一代 AI Agent 也正加速崛起。
将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。
中科院自动化所提出DipLLM,这是首个在复杂策略游戏Diplomacy中基于大语言模型微调的智能体框架,仅用Cicero 1.5%的训练数据就实现超越
像人一样推理。 大模型的架构,到了需要变革的时候? 在对复杂任务的推理工作上,当前的大语言模型(LLM)主要采用思维链(CoT)技术,但这些技术存在任务分解复杂、数据需求大以及高延迟等问题。
在长达数周的高强度「挖角」之后,Meta 今天凌晨宣布正式成立超级智能实验室(Meta Superintelligence Labs,简称 MSL)。Meta CEO 马克·扎克伯格在当时时间周一发布的一封内部信中透露,MSL 将整合公司现有的基础 AI 研究(FAIR)、大语言模型开发以及 AI 产品团队,并组建一个专门研发下一代 AI 模型的新实验室。
迈向通用人工智能(AGI)的核心目标之一就是打造能在开放世界中自主探索并持续交互的智能体。随着大语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,智能体已展现出令人瞩目的跨领域任务泛化能力。
过去几年,随着基于人类偏好的强化学习(Reinforcement Learning from Human Feedback,RLHF)的兴起,强化学习(Reinforcement Learning,RL)已成为大语言模型(Large Language Model,LLM)后训练阶段的关键技术。
在大语言模型(LLM)加速进入法律、医疗、金融等高风险应用场景的当下,“安全对齐”不再只是一个选项,而是每一位模型开发者与AI落地者都必须正面应对的挑战。
最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。