从分钟级等待到20倍超速:LightX2V重写AI视频生成速度上限
从分钟级等待到20倍超速:LightX2V重写AI视频生成速度上限今年以来,开源项目LightX2V 及其 4 步视频生成蒸馏模型在 ComfyUI 社区迅速走红,单月下载量超过 170 万次。越来越多创作者用它在消费级显卡上完成高质量视频生成,把“等几分钟出一段视频”变成“边看边出片”。
今年以来,开源项目LightX2V 及其 4 步视频生成蒸馏模型在 ComfyUI 社区迅速走红,单月下载量超过 170 万次。越来越多创作者用它在消费级显卡上完成高质量视频生成,把“等几分钟出一段视频”变成“边看边出片”。
最近,Google Research 发布了一篇 Blog《Titans + MIRAS:帮助人工智能拥有长期记忆》。它们允许 AI 模型在运行过程中更新其核心内存,从而更快地工作并处理海量上下文。
近日,由趣丸科技与北京大学软件工程国家工程研究中心共同发表的《Detecting Emotional Dynamic Trajectories: An Evaluation Framework for Emotional Support in Language Models(检测情感动态轨迹:大语言模型情感支持的评估框架)》论文,获 AAAI 2026 录用。
12 月 1 日,DeepSeek 一口气发布了两款新模型:DeepSeek-V3.2 和 DeepSeek-V3.2-Speciale。几天过去,热度依旧不减,解读其技术报告的博客也正在不断涌现。知名 AI 研究者和博主 Sebastian Raschka 发布这篇深度博客尤其值得一读,其详细梳理了 DeepSeek V3 到 V3.2 的进化历程。
如今,强化学习(RL)已成为提升大语言模型(LLM)复杂推理与解题能力的关键技术范式,而稳定的训练过程对于成功扩展 RL 至关重要。由于语言具有强烈的上下文属性,LLM 的 RL 通常依赖序列级奖励 —— 即根据完整生成序列给一个标量分数。
关于如何避免让大语言模型产生幻觉,一直以来的相关研究都非常多。
2025年,AI大模型的竞争焦点正在发生根本性转移。
2025就要过去了。UC Berkeley、Stanford和IBM联手做了一件大事。他们调研了306份在一线“造 Agent”的从业者问卷,并深度访谈了20个已经成功落地并产生价值的一线企业案例(涵盖金融、科技、医疗等领域)。试图回答一个最朴素的工程问题:一个能用的、赚钱的Agent,到底是用什么架构搭出来的?
当问题又深又复杂时,一味上最强模型既贵又慢。测试时扩展能想得更久,却不一定想得更对。
走上了堪称是“最佳 AI 转型路径”之后,他也在读研期间和合作者针对 AI 记忆开展了一项研究,借此发明出一种名为 LightMem(轻量记忆)的技术。在 LongMemEval 和 LoCoMo 这两个专门用于考察 AI 长期记忆能力的基准测试上,LightMem 回答问题的准确率全面超越之前的冠军模型,最高提升了 7% 以上,在某些数据集上甚至提升了将近 30%。