LangChain 最新agent框架deepagents测评:长任务友好,高可控
LangChain 最新agent框架deepagents测评:长任务友好,高可控任务规划+文件系统访问+子agent委托
任务规划+文件系统访问+子agent委托
全模态大模型(Omnimodal Large Models, OLMs)能够理解、生成、处理并关联真实世界多种数据类型,从而实现更丰富的理解以及与复杂世界的深度交互。人工智能向全模态大模型的演进,标志着其从「专才」走向「通才」,从「工具」走向「伙伴」的关键点。
最近不论是在学术圈还是产业实践中,对于RLVR和传统SFT之间的区别与联系,以及RL本身基于奖励建模反馈机制并结合不同的策略优化算法过程中对模型显性知识的学习和隐参数空间的变化的讨论热度一直很高。
如果告诉你,仅仅改变提示词(Prompt)的结构,就能让大模型在复杂推理任务上的表现暴涨 60%,你相信吗?
科研人不容易。3年投稿6次全被拒,每次等反馈要半年??机器学习大佬吴恩达听说这位学生的“水逆”遭遇后,亲手搓了个免费的AI论文评审智能体出来。通过在ICLR 2025审稿数据上训练系统,并在测试集中对比发现,该AI审稿系统与人类审稿的相关系数达0.42,和人与人审稿间的0.41相近甚至还高一点。
最新研究发现,只要把恶意指令写成一首诗,就能让Gemini和DeepSeek等顶尖模型突破安全限制。这项针对25个主流模型的测试显示,面对「诗歌攻击」,百亿美金堆出来的安全护栏瞬间失效,部分模型的防御成功率直接归零。最讽刺的是,由于小模型「读不懂」诗里的隐喻反而幸免于难,而「有文化」的大模型却因为过度解读而全线破防。
在推荐系统迈向多模态的今天,如何兼顾数据隐私与个性化图文理解?悉尼科技大学龙国栋教授团队联合香港理工大学杨强教授、张成奇教授团队,提出全新框架 FedVLR。该工作解决了联邦环境下多模态融合的异质性难题,已被人工智能顶级会议 AAAI 2026 接收为 Oral Presentation。
前两天,Google发了一个非常有趣的论文: 《Nested Learning: The Illusion of Deep Learning Architectures》
图像与视频重光照(Relighting)技术在计算机视觉与图形学中备受关注,尤其在电影、游戏及增强现实等领域应用广泛。当前,基于扩散模型的方法能够生成多样且可控的光照效果,但其优化过程通常依赖于语义空间,而语义上的相似性无法保证视觉空间中的物理合理性,导致生成结果常出现高光过曝、阴影错位、遮挡关系错误等不合理现象。
随着大型视觉语言模型在多个下游任务的广泛应用,其潜在的安全风险也开始快速显露。研究表明,即便是最先进的大型视觉语言模型,也可能在面对带有隐蔽的恶意意图的图像 — 文本输入时给出违规甚至有害的响应,而现有的轻量级的安全对齐方案都具有一定的局限性。