OpenAI突然开源新模型!99.9%的权重是0,新稀疏性方法代替MoE
OpenAI突然开源新模型!99.9%的权重是0,新稀疏性方法代替MoE破解AI胡说八道的关键,居然是给大模型砍断99.9%的连接线?
破解AI胡说八道的关键,居然是给大模型砍断99.9%的连接线?
6位前DeepMind成员以元系统重塑大模型调用方式,该系统推出的Gemini 3 Pro优化技术在ARC-AGI-2上以54%的成绩夺得榜首,而成本仅为此前最优方法的一半。
邹忌曾经有一个问题:吾与徐公孰美?
在 Physical Intelligence 最新的成果 π0.6 论文里,他们介绍了 π0.6 迭代式强化学习的思路来源:
多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?
在深入技术细节之前,我们先用一张漫画来直观理解 COIDO (Coupled Importance-Diversity Optimization) 解决的核心问题与方案:正如钟离在漫画中所言,面对海量视觉指令数据的选择任务,传统方法需要遍历全部数据才能进行筛选造成大量「磨损」(高昂计算成本)。同时在面对数据重要性和多样性问题时,传统方法往往顾此失彼。
北航刘偲教授团队提出首个大规模真实星座调度基准AEOS-Bench,更创新性地将Transformer模型的泛化能力与航天工程的专业需求深度融合,训练内嵌时间约束的调度模型AEOS-Former。这一组合为未来的“AI星座规划”奠定了新的技术基准。
想象一下,只需要一句话描述,AI 就能为你拍出一部完整的短剧?为了让这个想法变成现实,香港大学黄超教授团队开源了 ViMax 框架,并在 GitHub 获得 1.4k + 星标,专注于 Agentic Video Generation 的前沿探索。通过多智能体协作,ViMax 实现了真正的 "自编自导自演"—— 从创意构思到成片输出的完整自动化,把传统影视制作的每个环节都搬进了 AI 世界。
最近,来自Google Research、Google DeepMind和MIT的研究者们联合发表了一项重磅研究。结果显示:盲目增加智能体数量,在很多时候不仅没用,反而会让系统变笨、变慢、变贵。
扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临