最新英伟达经济学:每美元性能是AMD的15倍,“买越多省越多”是真的
最新英伟达经济学:每美元性能是AMD的15倍,“买越多省越多”是真的为什么AI算力霸主永远是英伟达?不算不知道,一算吓一跳:在英伟达平台每花一美元,获得的性能是AMD的15倍。
为什么AI算力霸主永远是英伟达?不算不知道,一算吓一跳:在英伟达平台每花一美元,获得的性能是AMD的15倍。
机器之心发布 随着 ChatGPT、Gemini、DeepSeek-V3、Kimi-K2 等主流大模型纷纷采用混合专家架构(Mixture-of-Experts, MoE)及专家并行策略(Expert
近日,来自伊利诺伊大学芝加哥分校、纽约大学、与蒙纳士大学的联合团队提出QuCo-RAG,首次跳出「从模型自己内部信号来评估不确定性」的思维定式,转而用预训练语料的客观统计来量化不确定性,
围绕这一挑战,上海人工智能实验室联合复旦大学、南京大学、南洋理工大学 S-Lab 等单位提出了 LongVie 2—— 一个能够生成长达 5 分钟高保真、可控视频的世界模型框架。
2026年,Scaling Law是否还能继续玩下去?对于这个问题,一篇来自DeepMind华人研究员的万字长文在社交网络火了:Scaling Law没死!算力依然就是正义,AGI才刚刚上路。
,时长 00:20 视频 1:单样例推理速度对比:SGLang 部署的 Qwen3-8B (NVIDIA) vs. LoPA-Dist 部署 (NVIDIA & Ascend)(注:NVIDIA 平台
新加坡国立大学(NUS)的尤洋教授近期发表了一篇深度分析:《智能增长的瓶颈》。在这篇分析文章中,尤洋教授从技术本质出发,直指智能增长的核心矛盾,为我们揭示了 AGI(通用人工智能)的可能路径。
在生成式 AI 技术日新月异的背景下,合成语音的逼真度已达到真假难辨的水平,随之而来的语音欺诈与信息伪造风险也愈演愈烈。作为应对手段,语音鉴伪技术已成为信息安全领域的研究重心。
2025最后几天,是时候来看点年度宝藏论文了。
在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面