OpenAI最强产品负责人:AGI限制在于人,不在LLM!Codex已能待命自我训练,曝内部压缩机制,18天3人上线安卓Sora
OpenAI最强产品负责人:AGI限制在于人,不在LLM!Codex已能待命自我训练,曝内部压缩机制,18天3人上线安卓Sora从 0 到上线,在OpenAI内部,安卓版 Sora经历的时间只有 28 天,而且期间只用了 2-3 名员工。
从 0 到上线,在OpenAI内部,安卓版 Sora经历的时间只有 28 天,而且期间只用了 2-3 名员工。
过去三年,扩散模型席卷图像生成领域。以 DiT (Diffusion Transformer) 为代表的新一代架构不断刷新图像质量的极限,让模型愈发接近真实世界的视觉规律。
南洋理工大学研究人员构建了EHRStruct基准,用于评测LLM处理结构化电子病历的能力。该基准涵盖11项核心任务,包含2200个样本,按临床场景、认知层级和功能类别组织。研究发现通用大模型优于医学专用模型,数据驱动任务表现更强,输入格式和微调方式对性能有显著影响。
近期,强化学习(RL)技术在提升语言模型的推理能力方面取得了显著成效。
在Anthropic,有一位驻场哲学家Amanda Askell专门研究如何与AI模型打交道。她不仅主导设计了Claude的性格、对齐与价值观机制,还总结出一些行之有效的提示词技巧。哲学在AI时代不仅没有落伍,反而那些通过哲学训练掌握提示词技巧的人,年薪中位数可以高达15万美元。
随着通用型(Generalist)机器人策略的发展,机器人能够通过自然语言指令在多种环境中完成各类任务,但这也带来了显著的挑战。
如果把用户在互联网上留下的每一个足迹都看作一段记忆,那么现在的推荐系统大多患有 “短期健忘症”。
要说真学术,还得看推特。
模型架构的重要性可能远超我们之前的认知。
最近,网友们已经被AI「手指难题」逼疯了。给AI一支六指手,它始终无法正确数出到底有几根手指!说吧AI,你是不是在嘲笑人类?其实这背后,暗藏着Transformer架构的「阿喀琉斯之踵」……