AAAI 2026杰出论文奖 | ReconVLA:具身智能研究首次获得AI顶级会议最佳论文奖
AAAI 2026杰出论文奖 | ReconVLA:具身智能研究首次获得AI顶级会议最佳论文奖在长期以来的 AI 研究版图中,具身智能虽然在机器人操作、自动化系统与现实应用中至关重要,却常被视为「系统工程驱动」的研究方向,鲜少被认为能够在 AI 核心建模范式上产生决定性影响。
在长期以来的 AI 研究版图中,具身智能虽然在机器人操作、自动化系统与现实应用中至关重要,却常被视为「系统工程驱动」的研究方向,鲜少被认为能够在 AI 核心建模范式上产生决定性影响。
AAAI 2026「七龙珠」,华人团队强势霸榜!从视觉重建到因果发现,再到知识嵌入传承,新一代AI基石正在新加坡闪耀。
GEM框架利用认知科学原理,从少量人类偏好中提取多维认知评估,让AI在极少标注下精准理解人类思维,提高了数据效率,在医疗等专业领域表现优异,为AI与人类偏好对齐提供新思路。
“全局交互” 几乎等同于 self-attention:每个 token 都能和所有 token 对话,效果强,但代价也直观 —— 复杂度随 token 数平方增长,分辨率一高就吃不消。现有方法大多从 “相似度匹配” 出发(attention),或从 “扩散 / 传导” 出发(热方程类方法)。但热方程本质上是一个强低通滤波器:随着传播时间增加,高频细节(边缘、纹理)会迅速消失,导致特征过平滑。
当你在电商平台搜索“苹果”,系统会推荐“水果”还是“手机”?或者直接跳到某个品牌旗舰店?短短一个词,背后承载了完全不同的购买意图。而推荐是否精准,直接影响用户的搜索体验,也影响平台的转化效率。
视觉模型用于工业“缺陷检测”等领域已经相对成熟,但当前普遍使用的传统模型在训练时对数据要求较高,需要大量的经过精细标注的数据才能训练出理想效果。
在 AI 辅助 Coding 技术快速发展的背景下,大语言模型(LLMs)虽显著提升了软件开发效率,但开源的 LLMs 生成的代码依旧存在运行时错误,增加了开发者调试成本。
短视频搜索业务是向量检索在工业界最核心的应用场景之一。然而,当前业界普遍采用的「自强化」训练范式过度依赖历史点击数据,导致系统陷入信息茧房,难以召回潜在相关的新鲜内容。
近年来,大语言模型在算术、逻辑、多模态理解等任务上之所以取得显著进展,很大程度上依赖于思维链(CoT)技术。所谓 CoT,就是让模型在给出最终答案前,先生成一系列类似「解题步骤」的中间推理。 这种方式
一年一度的AAAI Fellow计划又成为了人工智能领域大家关注的焦点。本次发布的2026年名单中,共有12位知名学者当选,其中包含了四位著名华人学者。