AAAI 2026 Oral | 拒绝「一刀切」!AdaMCoT:让大模型学会「看题下菜碟」,动态选择最佳思考语言
AAAI 2026 Oral | 拒绝「一刀切」!AdaMCoT:让大模型学会「看题下菜碟」,动态选择最佳思考语言多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?
多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?
大模型推理的爆发,实际源于 scaling 范式的转变:从 train-time scaling 到 test-time scaling(TTS),即将更多的算力消耗部署在 inference 阶段。典型的实现是以 DeepSeek r1 为代表的 long CoT 方法:通过增加思维链的长度来获得答案精度的提升。那么 long CoT 是 TTS 的唯一实现吗?
在这片喧嚣和迷雾之中,我们迫切需要一个清晰的导航图。而Jason Wei正是提供这份地图的最佳人选之一。他现任Meta超级智能实验室(Meta Super Intelligence Labs)的研究科学家,此前在OpenAI工作了两年,o1研发的主导者,更早之前是Google Brain的科学家。
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
蚂蚁通用人工智能中心自然语言组联合香港大学自然语言组(后简称“团队”)推出PromptCoT 2.0,要在大模型下半场押注任务合成。实验表明,通过“强起点、强反馈”的自博弈式训练,PromptCoT 2.0可以让30B-A3B模型在一系列数学代码推理任务上实现新的SOTA结果,达到和DeepSeek-R1-0528, OpenAI o3, Gemini 2.5 Pro等相当的表现。
CoT思维链的下一步是什么? DeepMind提出帧链CoF(chain-of-frames)。
LRM通过简单却有效的RLVR范式,培养了强大的CoT推理能力,但伴随而来的冗长的输出内容,不仅显著增加推理开销,还会影响服务的吞吐量,这种消磨用户耐心的现象被称为“过度思考”问题。
您对“思维链”(Chain-of-Thought)肯定不陌生,从最早的GPT-o1到后来震惊世界的Deepseek-R1,它通过让模型输出详细的思考步骤,确实解决了许多复杂的推理问题。但您肯定也为它那冗长的输出、高昂的API费用和感人的延迟头疼过,这些在产品落地时都是实实在在的阻碍。
大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。
思维链 (CoT) 提示技术常被认为是让大模型分步思考的关键手段,通过在输入中加入「Let’s think step by step」等提示,模型会生成类似人类的中间推理步骤,显著提升复杂任务的表现。然而,这些流畅的推理链条是否真的反映了模型的推理能力?