2张4090竟能本地微调万亿参数Kimi K2!趋境联合清华北航把算力门槛击穿了
2张4090竟能本地微调万亿参数Kimi K2!趋境联合清华北航把算力门槛击穿了微调超大参数模型,现在的“打开方式”已经大变样了: 仅需2-4 张消费级显卡(4090),就能在本地对DeepSeek 671B乃至Kimi K2 1TB这样的超大模型进行微调了。
微调超大参数模型,现在的“打开方式”已经大变样了: 仅需2-4 张消费级显卡(4090),就能在本地对DeepSeek 671B乃至Kimi K2 1TB这样的超大模型进行微调了。
新乐子来了。 10个AI大模型,券商账户实时交易,勇闯美股。 除了老面孔GPT、Claude、Gemini、Grok、Qwen、DeepSeek,这次四个国产新玩家,豆包、Minimax、Kimi、文心也加入战场。昨晚,首战正式开赛,豆包已经一马当先,开始了开门红。
2025 年 10 月,美股经历了一轮典型的震荡行情:月初科技股强势反弹,月中通胀数据扰动市场,10 月 10 日前后纳指单日波动超过 3%。就在这波谲云诡的市场环境中,港大黄超教授团队的开源 AI-Trader 项目正式启动实盘测试。该项目上线一周时间在 GitHub 上获得了近 8K 星标,展现了社区对 AI 自主交易技术和金融市场分析的能力高度关注。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
咱就是说,大家微信星标的那一溜儿公众号,真会点开看吗?直到我最近,偷偷把这个苦差事,外包给了一个叫语鲸的AI。等一下…这logo,咋一股DeepSeek味儿?
在NeurIPS 2025论文中,来自「南京理工大学、中南大学、南京林业大学」的研究团队提出了一个极具突破性的框架——VIST(Vision-centric Token Compression in LLM),为大语言模型的长文本高效推理提供了全新的「视觉解决方案」。值得注意的是,这一思路与近期引起广泛关注的DeepSeek-OCR的核心理念不谋而合。
读者,您好!今天想跟您聊一个硬核又极具启发性的项目——HGM(Huxley-Gödel Machine)。我刚刚一起花了几个小时,从环境配置的坑,一路“打怪升级”到让它最终跑完,相信您可能已经从别的公众号上看到了这篇文章。
DeepSeek-OCR这段时间非常火,但官方开源的文件是“按 NVIDIA/CUDA 习惯写的 Linux 版推理脚本+模型权重”,而不是“跨设备跨后端”的通吃实现,因此无法直接在苹果设备上运行,对于Mac用户来说,在许多新模型诞生的第一时间,往往只能望“模”兴叹。
今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。