
揭秘LLM“思考”之谜:推理即“梯度下降”,元学习框架解构训练过程,还给优化提供新思路
揭秘LLM“思考”之谜:推理即“梯度下降”,元学习框架解构训练过程,还给优化提供新思路近年来,大语言模型(LLM)以其卓越的文本生成和逻辑推理能力,深刻改变了我们与技术的互动方式。然而,这些令人瞩目的表现背后,LLM的内部机制却像一个神秘的“黑箱”,让人难以捉摸其决策过程。
近年来,大语言模型(LLM)以其卓越的文本生成和逻辑推理能力,深刻改变了我们与技术的互动方式。然而,这些令人瞩目的表现背后,LLM的内部机制却像一个神秘的“黑箱”,让人难以捉摸其决策过程。
大幅缓解LLM偏科,只需调整SFT训练集的组成。
为什么语言模型能从预测下一个词中学到很多,而视频模型却从预测下一帧中学到很少?
为什么语言模型很成功,视频模型还是那么弱?
大模型目前的主导地位只是暂时的,在未来五年甚至十年内都不会是技术前沿。 这是新晋图灵奖得主、强化学习之父Richard Sutton对未来的最新预测。
在旧金山AI工程师世博会上,Simon Willison用自创「骑自行车的鹈鹕」图像生成测试,幽默回顾过去半年LLM的飞速发展。亲测30多款AI模型,强调工具+推理成最强AI组合!
2024年,伯克利人工智能研究中心(BAIR)率先提出了一个新概念——复合人工智能系统(Compound AI Systems,简称CAIS)。这个看似简单的术语背后,蕴含着AI系统架构的根本性改变:不再依赖单一LLM的"超级大脑",而是构建多组件协同的"智能生态系统"。
当前,强化学习(RL)在提升大语言模型(LLM)推理能力方面展现出巨大潜力。DeepSeek R1、Kimi K1.5 和 Qwen 3 等模型充分证明了 RL 在增强 LLM 复杂推理能力方面的有效性。
通过这份全面指南探索大语言模型(LLMs)的关键概念、技术和挑战,专为AI爱好者和准备面试的专业人士精心打造。
迄今为止行业最大的开源力度。在大模型上向来低调的小红书,昨天开源了首个自研大模型。