AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

针对端到端全模态大模型(OmniLLMs)在跨模态对齐和细粒度理解上的痛点,浙江大学、西湖大学、蚂蚁集团联合提出 OmniAgent。这是一种基于「音频引导」的主动感知 Agent,通过「思考 - 行动 - 观察 - 反思」闭环,实现了从被动响应到主动探询的范式转变。

来自主题: AI技术研报
6146 点击    2026-01-09 10:54
深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

尽管多模态大语言模型(MLLMs)在识别「图中有什么」这一语义层面上取得了巨大进步,但在理解「图像看起来怎么样」这一感知层面上仍显乏力。

来自主题: AI技术研报
5577 点击    2026-01-08 15:23
多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。

来自主题: AI技术研报
6215 点击    2026-01-08 15:20
为了解决95%AI项目的失败,我们需要让Agentic「回到未来」

为了解决95%AI项目的失败,我们需要让Agentic「回到未来」

为了解决95%AI项目的失败,我们需要让Agentic「回到未来」

您可能已经感受到了,从2025年开始到如今,全世界都在谈论Agentic AI或Agent(代理式AI)。从董事会到咨询公司,从更高级别的战略到街头巷尾,仿佛只要接入了大模型(LLM),所有的业务流程就能自动运转,效率就能翻倍。

来自主题: AI技术研报
10100 点击    2026-01-06 16:18
空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间理解能力是多模态大语言模型(MLLMs)走向真实物理世界,成为 “通用型智能助手” 的关键基础。但现有的空间智能评测基准往往有两类问题:一类高度依赖模板生成,限制了问题的多样性;另一类仅聚焦于某一种空间任务与受限场景,因此很难全面检验模型在真实世界中对空间的理解与推理能力。

来自主题: AI技术研报
7304 点击    2026-01-06 09:50
字节Seed:大概念模型来了,推理的何必是下一个token

字节Seed:大概念模型来了,推理的何必是下一个token

字节Seed:大概念模型来了,推理的何必是下一个token

LLM的下一个推理单位,何必是Token?刚刚,字节Seed团队发布最新研究——DLCM(Dynamic Large Concept Models)将大模型的推理单位从token(词) 动态且自适应地推到了concept(概念)层级。

来自主题: AI技术研报
9178 点击    2026-01-04 21:01
微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

近日,腾讯微信 AI 团队提出了 WeDLM(WeChat Diffusion Language Model),这是首个在工业级推理引擎(vLLM)优化条件下,推理速度超越同等 AR 模型的扩散语言模型。

来自主题: AI技术研报
9270 点击    2026-01-03 13:56
自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面

来自主题: AI技术研报
7576 点击    2025-12-31 09:21
拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

在大模型智能体(LLM Agent)落地过程中,复杂工作流的高效执行、资源冲突、跨框架兼容、分布式部署等问题一直困扰着开发者。而一款名为Maze的分布式智能体工作流框架,正以任务级精细化管理、智能资源调度、多场景部署支持等核心优势,为这些痛点提供一站式解决方案。

来自主题: AI资讯
8176 点击    2025-12-30 15:14