港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」
港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」论文第一作者何浩然是香港科技大学博士生,研究方向包括强化学习和基础模型等,研究目标是通过经验和奖励激发超级智能。共同第一作者叶语霄是香港科技大学一年级博士。通讯作者为香港科技大学电子及计算机工程系、计
论文第一作者何浩然是香港科技大学博士生,研究方向包括强化学习和基础模型等,研究目标是通过经验和奖励激发超级智能。共同第一作者叶语霄是香港科技大学一年级博士。通讯作者为香港科技大学电子及计算机工程系、计
在NeurIPS 2025论文中,来自「南京理工大学、中南大学、南京林业大学」的研究团队提出了一个极具突破性的框架——VIST(Vision-centric Token Compression in LLM),为大语言模型的长文本高效推理提供了全新的「视觉解决方案」。值得注意的是,这一思路与近期引起广泛关注的DeepSeek-OCR的核心理念不谋而合。
Voice Agent 赛道正在爆发,但它迫切需要一个能让对话真正「流动起来」的底层引擎,一个能撑起下一代交互体验的 TTS 模型。竞争的焦点,已经从 LLM 的「大脑」,延伸到了 TTS 的「嗓音」。谁掌握嗓音,谁就掌握着下一代 AI 商业化的钥匙。而 10 月 30 日 MiniMax 发布的 Speech 2.6 模型,似乎正是一个专为解决这些痛点而来的答案。
当大语言模型突破了 “理解与生成” 的瓶颈,Agent 迅速成为 AI 落地的主流形态。从智能客服到自动化办公,几乎所有场景都需要 Agent 来承接 LLM 能力、执行具体任务。
来自人大和清华的研究团队发布了 DeepAnalyze,首个面向自主数据科学的 agentic LLM。DeepAnalyze引起了社区内广泛讨论,一周内收获1000多个GitHub星标、20w余次社交媒体浏览量。
用 iPhone 本地跑大模型已经不是新鲜事了,但能不能在 iPhone 上微调模型呢?
大语言模型(LLM)虽已展现出卓越的代码生成潜力,却依然面临着一道艰巨的挑战:如何在有限的计算资源约束下,同步提升对多种编程语言的理解与生成能力,同时不损害其在主流语言上的性能?
大语言模型(LLMs)推理能力近年来快速提升,但传统方法依赖大量昂贵的人工标注思维链。中国科学院计算所团队提出新框架PARO,通过让模型学习固定推理模式自动生成思维链,只需大模型标注1/10数据就能达到全量人工标注的性能。这种方法特别适合像金融、审计这样规则清晰的领域,为高效推理监督提供了全新思路。
在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。
当今的 AI 智能体(Agent)越来越强大,尤其是像 VLM(视觉-语言模型)这样能「看懂」世界的智能体。但研究者发现一个大问题:相比于只处理文本的 LLM 智能体,VLM 智能体在面对复杂的视觉任务时,常常表现得像一个「莽撞的执行者」,而不是一个「深思熟虑的思考者」。