AI资讯新闻榜单内容搜索-LLMs

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLMs
JustGRPO:扩散语言模型的极简主义回归

JustGRPO:扩散语言模型的极简主义回归

JustGRPO:扩散语言模型的极简主义回归

扩散语言模型(Diffusion LLMs, dLLMs)因支持「任意顺序生成」和并行解码而备受瞩目。直觉上,打破传统自回归(AR)「从左到右」的束缚,理应赋予模型更广阔的解空间,从而在数学、代码等复杂任务上解锁更强的推理潜力。

来自主题: AI技术研报
9639 点击    2026-01-29 14:55
Gemini准确率从21%飙到97%!谷歌只用了这一招:复制粘贴

Gemini准确率从21%飙到97%!谷歌只用了这一招:复制粘贴

Gemini准确率从21%飙到97%!谷歌只用了这一招:复制粘贴

简单到难以置信!近日,Google Research一项新研究发现:想让大模型在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!

来自主题: AI技术研报
9098 点击    2026-01-18 14:58
跳出「黑盒」,人大刘勇团队最新大语言模型理论与机理综述

跳出「黑盒」,人大刘勇团队最新大语言模型理论与机理综述

跳出「黑盒」,人大刘勇团队最新大语言模型理论与机理综述

大语言模型(LLMs)的爆发式增长引领了人工智能领域的范式转移,取得了巨大的工程成功。然而,一个关键的悖论依然存在:尽管 LLMs 在实践中表现卓越,但其理论研究仍处于起步阶段,导致这些系统在很大程度上被视为难以捉摸的「黑盒」。

来自主题: AI技术研报
5784 点击    2026-01-16 10:09
一夜200万阅读,OpenAI神同步!这项测评框架让全球顶尖LLM全翻车

一夜200万阅读,OpenAI神同步!这项测评框架让全球顶尖LLM全翻车

一夜200万阅读,OpenAI神同步!这项测评框架让全球顶尖LLM全翻车

最近,一篇由中国团队领衔全球24所TOP高校机构发布,用于评测LLMs for Science能力高低的论文,在外网炸了!当晚,Keras (最高效易用的深度学习框架之一)缔造者François Chollet转发论文链接,并喊出:「我们迫切需要新思路来推动人工智能走向科学创新。」

来自主题: AI资讯
7908 点击    2026-01-15 11:22
AAAI 2026|AP2O-Coder 让大模型拥有「错题本」,像人类一样按题型高效刷题

AAAI 2026|AP2O-Coder 让大模型拥有「错题本」,像人类一样按题型高效刷题

AAAI 2026|AP2O-Coder 让大模型拥有「错题本」,像人类一样按题型高效刷题

在 AI 辅助 Coding 技术快速发展的背景下,大语言模型(LLMs)虽显著提升了软件开发效率,但开源的 LLMs 生成的代码依旧存在运行时错误,增加了开发者调试成本。

来自主题: AI技术研报
9017 点击    2026-01-14 15:28
「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

「听觉」引导「视觉」,OmniAgent开启全模态主动感知新范式

针对端到端全模态大模型(OmniLLMs)在跨模态对齐和细粒度理解上的痛点,浙江大学、西湖大学、蚂蚁集团联合提出 OmniAgent。这是一种基于「音频引导」的主动感知 Agent,通过「思考 - 行动 - 观察 - 反思」闭环,实现了从被动响应到主动探询的范式转变。

来自主题: AI技术研报
6397 点击    2026-01-09 10:54
深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

深入感知级别图像理解:UniPercept 统一图像美学、质量与结构纹理感知

尽管多模态大语言模型(MLLMs)在识别「图中有什么」这一语义层面上取得了巨大进步,但在理解「图像看起来怎么样」这一感知层面上仍显乏力。

来自主题: AI技术研报
5799 点击    2026-01-08 15:23
多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案

在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。

来自主题: AI技术研报
6449 点击    2026-01-08 15:20
空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间理解能力是多模态大语言模型(MLLMs)走向真实物理世界,成为 “通用型智能助手” 的关键基础。但现有的空间智能评测基准往往有两类问题:一类高度依赖模板生成,限制了问题的多样性;另一类仅聚焦于某一种空间任务与受限场景,因此很难全面检验模型在真实世界中对空间的理解与推理能力。

来自主题: AI技术研报
7457 点击    2026-01-06 09:50
自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面

来自主题: AI技术研报
7675 点击    2025-12-31 09:21