仅需10%思维链标注,等同全量性能!计算所发布推理监督新范式
仅需10%思维链标注,等同全量性能!计算所发布推理监督新范式大语言模型(LLMs)推理能力近年来快速提升,但传统方法依赖大量昂贵的人工标注思维链。中国科学院计算所团队提出新框架PARO,通过让模型学习固定推理模式自动生成思维链,只需大模型标注1/10数据就能达到全量人工标注的性能。这种方法特别适合像金融、审计这样规则清晰的领域,为高效推理监督提供了全新思路。
大语言模型(LLMs)推理能力近年来快速提升,但传统方法依赖大量昂贵的人工标注思维链。中国科学院计算所团队提出新框架PARO,通过让模型学习固定推理模式自动生成思维链,只需大模型标注1/10数据就能达到全量人工标注的性能。这种方法特别适合像金融、审计这样规则清晰的领域,为高效推理监督提供了全新思路。
聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。
近年来,以强化学习为核心的训练方法显著提升了大语言模型(Large Language Models, LLMs)的推理能力与对齐性能,尤其在理解人类意图、遵循用户指令以及增强推理能力方面效果突出。尽管现有综述对强化学习增强型 LLMs 进行了概述,但其涵盖范围较为有限,未能全面总结强化学习在 LLMs 全生命周期中的作用机制。
来自牛津大学、新加坡国立大学、伊利诺伊大学厄巴纳-香槟分校,伦敦大学学院、帝国理工学院、上海人工智能实验室等等全球 16 家顶尖研究机构的学者,共同撰写并发布了长达百页的综述:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》。
随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视
OpenRouter 创立于 2023 年初,给用户提供一个统一的 API Key,用于调用自身接入的所有模型,既包括了市面上的主流基础模型,也包括部分开源模型,一些开源模型还有多个不同的供应商。如果用户选择使用自有的 Key ,也可以同时享受 OpenRouter 的统一接口与其他服务。
近年来,大语言模型(LLMs)在复杂推理任务上的能力突飞猛进,这在很大程度上得益于深度思考的策略,即通过增加测试时(test-time)的计算量,让模型生成更长的思维链(Chain-of-Thought)。